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SUMMARY

This research program dealt with the application of high-performance computing methods to the
numerical simulation of complete jet engines. The program was initiated in January 1993 by
applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-
pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were
successfully tested. Attention was then focused on methodology for the partitioned analysis of
the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by
these structural displacements. The latter is treated by a ALE technique that models the fluid mesh
motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements.
New partitioned analysis procedures to treat this coupled three-component problem were developed
during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have
been successfully tested on several massively parallel computers, including the iPSC-860, Paragon
XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we
have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid
discretization in conjunction with circumferential averaging to include effects of blade forces, loss.
combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor
for parallel versions of ENG10 was developed. During 1995 and 1996 we developed the capability
for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested
on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the
[ 196 Computational Aeroscience meeting.






1. OVERVIEW

The present program deals with the application of high-performance parallel computation for the
analysis of complete jet engines, considering the interaction of fluid, thermal and mechanical
components. The research is driven by the simulation of advanced aircraft propulsion systems,
which is a problem of primary interest to NASA Lewis.

The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat
transfer in aircraft engines. The methodology issues to be addressed include: consistent discrete
formulation of coupled problems with emphasis on coupling phenomena: effect of partitioning
strategies, augmentation and temporal solution procedures; sensitivity of response to problem
parameters: and methods for interfacing multiscale discretizations. The computer implementation
issues to be addressed include: parallel treatment of coupled systems; domain decomposition and
mesh partitioning strategies; data representation in object-oriented form and mapping to hardware
driven representation, and tradeoff studies between partitioning schemes with differing degree of
coupling.

2. STAFF

The present grant began in January 1993 and concluded in July 1996. Two graduate students
were supported during that period. M. Ronaghi (a U.S. citizen) began his graduate studies at the
University of Colorado on January 1993. He completed a M.Sc. in Aerospace Engineering on May
1994 and left to join Analytics Inc. (Hampton, VA) on June 1994.

U. Gumaste (a permanent U.S. resident) began his graduate studies at Colorado in August 1993.
Mr. Gumaste received a B.Tech in Civil Engineering from the Indian Institute of Technology.
Bombay. India. He completed his Ph. D. course requirement in the Fall 1994 semester with the
transfer of graduate credit units from the University of Maryland. On November 1994 and December
1996 he passed the Preliminary Exam and Comprehensive Exam, respectively, for the Ph. D. degree.
and is scheduled to complete his Ph. D. by the end of 1997. He became fumiliar with our external
acroelastic codes starting in the summer of 1994, He visited NASA Lewis for five weeks during
July—August 1994, and for four weeks during June-July 1995.

One Post-Doctoral Research Associate, Paul Stern, was partly supported by this grant during 1994-
95 for running benchmarks on parallel computers. One graduate student, P.-S. Chen. supported by
a related grant from NASA Ames, assisted with model preparation tasks over the period 1995-96.

The development of FSI methodology for this project has benefited from the presence of several
Visiting Scholars whose work concentrated on the related problem of exterior aeroelasticity for a
complete aircraft. This project was part of a Grant Challenge Applications Award supported by
NSF, but most aspects of the solution methodology and parallel implementation are applicable to
FS1Iengine problems. Dr. S. Lanteri conducted extensive experimentation on several computational
algorithms for compressive viscous flow simulation on the iPSC-860, CM-5 and KSR-1 as reported
in the July 1994 Progress Report. Dr. N. Maman implemented “mesh matching™ techniques that
connect separately generated fluid and structural meshes. Dr. S. Piperno developed and evaluated



implicit and subcycled partitioned analysis procedures for the interaction of structure, fluid and
fluid-mesh motion. A new approach to augmentation of the governing semi-discrete equations that
improves stability while keeping communications overhead modest was investigated. Finally, Dr.
M. Lesoinne (who finished his Ph.D. under C. Farhat on August 1994 and is presently a Research
Faculty) made significant contributions to the modeling and computational treatment of the fluid
mesh motion, and to the development of global conservation laws that must be obeyed by those
motions.

Results from these studies are collected in a series of reports and papers. The major ones are
enclosed as Appendices to the present report.

3. DEVELOPMENT OF PARTITIONED ANALYSIS METHODS

The first parallel computations of a jet engine, presented in the first progress report of July 1993
and reporoduced here as Appendix [. dealt with the fluid flow within a jet engine structure that is
considered rigid and hence provides only guiding boundary conditions for the gas flow. When the
structural flexibility is accounted for two complications occur:

. The engine simulation algorithm must account for the structural flexibility though periodic
transfer of interaction information, and

{9

The fluid mesh must smoothly follow the relative structural motions through an ALE (Adaptive
Lagrangian Eulerian) scheme. The particular ALE scheme selected for the present work makes
use of Batina’s proposed pseudo-mechanical model of springs and masses overlaid over the
fluid mesh.

Research work during the period July 1993 through July 1996 was dominated by the treatment of
two subjects: partitioned analysis of fluid-structure interaction (FSI) and accounting for fluid mesh
motions. The partitioned analysis algorithm developed for the FSI problem is always implicit in
the structure (because of its larger time scale of significant vibratory motions) and either explicit
or implicit for the gas low modcled by the Navier-Stokes equations. Subcycling, in which the
integration stepsize tor the fluid may be smaller than that used in the structure, was also studied.

3.1. General Requirements

The fundamental practical considerations in the development of these methods are: (1) numeri-
cal stability, (2) fidelity to physics, (3) accuracy, and (4) MPP efficiency. Numerical stability is
fundamental in that an unstable method, no matter how efficient, is useless. There are additional
considerations:

[.  Stability degradation with respect to that achievable for the uncoupled tields should be min-
imized. For example. if the treatment is implicit-implicit (I-1) we would like to maintain
unconditional stability. [f the fluid is treated explicitly we would like to maintain the same
CFL stability limit.

tJ

Masking of physical instability should be avoided. This is important in that flutter or diver-
gence phenomena should not be concealed by numerical dissipation. For this reasons all time
integration algorithms considered in this work must exclude the use of artificial damping.

2



3.2. Stability vs. Communication-Overhead Tradeoff

The degradation of numerical stability degradation is primarily influenced by the nature of infor-
mation exchanged every time step among the coupled subsystems during the course of partitioned
integration. A methodology called augmentation that systematically exploits this idea was devel-
oped by Park and Felippa in the late 1970s. The idea is to modify the governing equations of one
subsystem with system information from connected subsystems. The idea proved highly successful
for the sequential computers of the time. A fresh look must be taken to augmentation, however, in
light of the communications overhead incurred in massively parallel processing. For the present
application three possibilities were considered:

No augmentation. The 3 subsystems (fluid, structure and ALE mesh) exchange only minimal
interaction state information such as pressures and surface-motion velocities, but no information
on system characteristics such as mass or stiffness. The resulting algorithm has minimal MPP
communication overhead but poor stability characteristics. In fact the stability of an implicit-implicit
scheme becomes conditional and not too different from that of a less expensive implicit-explicit
scheme. This degradation in turn can significantly limit the stepsize for both fluid and structure.

Full augmentation. This involves transmission of inverse-matrix-type data from one system to
another. Such data are typified by terms such as a a structure-to-fluid coupling-matrix times the
inverse of the structural mass. Stability degradation can be reduced or entirely eliminated; for
example implicit-implicit unconditional stability may be maintained. But because the transmitted
matrix combinations tend to be much less sparse than the original system matrices, the MPP com-
munications overhead can become overwhelming, thus negating the benefits of improved stability
characteristics.

Purtial augmentation. This new approach involves the transmission of coupling matrix information
which does not involve inverses. [t is efficiently implemented as a delayed correction to the
integration algorithm by terms proportional to the squared stepsize. The MPP communication
requirements are modest in comparison to the fully-augmented case. whereas stability degradation
can be again eliminated with some additional care.

The partial augmentation scheme was jointly developed by S. Piperno and C. Farhat in early 1994
Its derivation was reported in the July 1994 report and is enclosed here as Appendix I1.

The use of these methods in three-dimensional aeroelasticity has been investigated from the summer
1994 to the present time. This investigation has resulted in the development of four specific
algorithms for explicit/implicit staggered time integration, which are labeled as AO through A4.
The basic algorithm AQ is suitable for sequential computers when the time scale and computational
cost of fAuid and structure components is comparable. Algorithm Al incorporates fluid subcycling.
Algorithms A2 and A3 aim to exploit inter-field parallelism by allowing the integration over fluid
and structure to proceed concurrently, with A3 aimed at achieving better accuracy through a more
complex field synchronization scheme. These algorithms are described in more detail in Appendix
Il of this report.



3.3. Effects of Moving Fluid Mesh

The first one-dimensional results on the effect of a dynamic fluid mesh on the stability and accuracy
of the staggered integration were obtained by C. Farhat and S. Piperno in late 1993 and early 1994,
and are discussed in Appendix Il of the July 1994 report. A doctoral student, M. Lesoinne (presently
a post-doctoral Research Associate supported by a related NSF grant) extended those calculations to
the multidimensional case. This work culminated in the development of a geometric conservation
law (GCL) that must be verified by the mesh motion in the three-dimensional case. This law applies
to unstructured meshes typical of finite element and finite-volume fluid discretizations, and extends
the GCL enunciated for regular finite-difference discretizations by Thomas and Lombard in 1977.
This new result is presented in more detail in Appendix II of this report.

3.4. Benchmarking on Parallel Computers

The new staggered solution algorithms for FSI, in conjunction with the improved treatment of fluid
mesh motion dictated by the GCL, have been tested on several massively-parallel computational
platforms using benchmark aerodynamic and FSI problems. These platforms include the Intel i860
Hypercube, Intel XP/S Paragon, Cray T3D, and IBM SP2. Performance results from these tests are
reported and discussed in Appendix I of this report.

4. MODELING OF COMPLETE ENGINE
Work on the global model of a complete engine proceeded through two phases during 1994,

4.1. Homogenized Modeling of Compressor and Combustion Areas

Initial work in this topic in the first six months of 1994 was carried out using “cnergy injection™
ideas. This idea contemplated feeding (or removing) kinetic and thermal energy into fluid mesh
volume elements using the total-energy variables as “‘volume torcing™ functions.

Although promising, energy injection in selected blocks of fluid volumes was found to cause
significant numerical stability difficulties in the transient gas-flow analysis. which used explicit
time integration. Consequently the development of these methods was put on hold because of the
decision to use the program ENG10 (which is briefly described in 4.2 below) for flow global analysis.
ENG10 makes use of similar ideas but the formulation of the governing equations and source terms
in a rotating coordinate system is different. In addition a semi-implicit mulitigrid method. rather
than explicit integration, is used to drive the gas flow solution to the steady state condition, resulting
in better stability characteristics.

4.2. Load Balancing Preprocessor for Program ENG10

As a result of Mr. Gumaste's visit to NASA Lewis during July-August of 1994, it was decided to
focus on the ENG10 code written by Dr. Mark Stewart of NYMA Rescarch Corp. to carry out the
parallel analysis of a complete engine. This program was developed under contract with NASA
Lewis, the contract monitors of this project being Austin Evans and Russell Claus.
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ENG10 is a research program designed to carry out a “2 1/2” dimensional” flow analysis of a
complete turbofan engine taking into account — through appropriate circumferential averaging —
blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. The engine
equations are derived from the three-dimensional fluid flow equations in a rotating cylindrical
coordinate system. The Euler fluid flow equations express conservation of mass, momentum
and rothalpy. These equations are discretized by structured finite-volume (FV) methods. The
resulting discrete model is treated by multiblock-multigrid solution techniques. A multiblock grid
divides the computational domain into topologically rectangular blocks in each of which the grid
is regular (structured). For bladed jet engine geometries, this division is achieved through a series
of supporting programs, namely TOPOS, TF and MS.

During the period September through December 1994, Mr. Gumaste devoted his time to the fol-

lowing tasks.

(a) Understanding the inner workings of ENG10 and learning to prepare inputs to this program
(for which there is no user manual documentation) with the assistance from Dr. Stewart.

(b) Provide for links to the pre/postprocessor TOPS/DOMDEC developed by Charbel Farhat’s group
to view the decomposed model and analysis results.

(¢) Develop and test algorithms for load-balancing the aerodynamic analysis of ENG10 in anticipa-
tion of running that program on parallel computers. The algorithm involves iterative merging
and splitting of original blocks while respecting grid regularity constraints. This development
resulted in a Load-Balancing (LB) program that can be used to adjust the original multiblock-
arid discretization before starting ENG10 analysis runs on remote parallel computers (or local
workstation networks).

Subtasks (b) and (¢) were tested on a General Electric Energy Efficient Engine (GE-EEE) model
provided by Dr. Stewart. A report on the development of LB is provided in Appendix I of this
report.

5. 3D AEROELASTIC SIMULATIONS OF ENGINE ROWS

The final year of the grant were devoted to the aeroelastic simulation of multiple rows of the
compressor stage of the GE EEE engine. Progress in that activity is summarized here.

5.1 The Aeroelastic Program PARFSI

This program treats the coupled aeroelastic problem following the partitioned analysis outlined
previously. This strategy allows the development of tailored methods for each discipline component
independently of the others. Also., new physical or computational partitions can be added to existing
systems without substantial modifications to software modules that have attained stability. The main
software components of PARFST are briefly outlined below.

Fluid Solver. An Eulerian, explicit 3D Navier-Stokes solver based on Van Leer’s Monotic Upwind
System Conservation Laws (MUSCL) scheme [8]. May be reduced to an Euler solver tfor cases
where viscosity effects are secondary, with a substantial (over 10 fold) speed gain. The convective
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flux is handled by a finite volume discretization while a Galerkin finite element discretization is
used for the diffusive flux. Non-overlapping domain decomposition is used for parallelization.
The MIMD implementation of the code has been extensively tested on the iPSC-860, KSR-1 and
Paragon. Preliminary results on the IBM SP-2 at NASA Ames were obtained during 1994 [4] with
initial production results on multiblade configurations described in Subsection 3.3. The fluid code
also runs efficiently on shared memory supercomputers such as the Cray C90 and YMP, and on
workstation networks.

Structure Solver: A Lagrangian, implicit structure integrator based on the FETI (Finite Element
Tearing and Interconnecting) mesh decomposition method. Mesh subdomains are condensed to the
boundary by a direct solver. The interface problem is solved for Lagrange multiplier interpolants
using projected/preconditioned conjugate gradients. In dynamic analysis, performance is further
enhanced by a convergence accelerator that “remembers™ the set of conjugate directions at the
previous step. This solver has exhibited excellent MPP scalability [1-3].

Domain Decomposer: The pre- and post-processor program TOP-DOMDEC [2] has been developed
for domain decomposition and dynamic visualization. This program performs automatic domain
decomposition of fluid and structure discretizations and submits simulation runs to remote super-
computers. This program operates on SGI and IBM workstations using the GL graphics library and
has a state-of-the-art “point and click™ user-interface. In addition to TOP-DOMDEC a load balancing
program for multiblock grids was developed [4] for the ENG10 program described above.

Mesh Transfer. As noted previously the structure and fluid meshes are independently constructed
and thus generally do not contorm on the fluid-structure interfaces. The MATCHER preprocessor
program [7] handles the initial process of information transfer between coupled but mismatched
discretizations. This program uses a consistent surtace interpolation approach and prepares the
necessary decomposition so that interface data transfers can occur in parallel during the time-
integration simulation.

Near-Field Fluid Mesh Motion. The ALE-mesh partition is handled through a spring-mass-dashpot
network of fictitious mechanical elements placed over edges of the near-field Huid elements [5.6].
This network 1s implicitly time-integrated by the same techniques used in the structural solver,

5.2 Parallel Analysis of a Multi-Fan-Blade Configuration

The first three-dimensional aeroelastic analysis involving a multiple fan-blade configuration was
successfully performed during October 1995 using PARFST on the NAS/IBM SP2 at NASA Ames.
This massively parallel supercomputer has 144 processing nodes (being expanded to 200+ as of this
writing). [ts nominal aggregate peak speed is over 100 Gigaflops, which puts it among the class of
the most powerful MPP platforms worldwide.

Resources for this stmulation were provided as part of a resource competition solicited by the
CAS Office at NASA Ames in support of ongoing or new HPCC projects of relevance to NASA.
An 8000-hour SP2 account tor the Operational Year 95-96 was awarded on September 1995 and
enabled by October 1st. This award was important in expediting these large simulations because
the latest version of PARFSI simulation modules, which contain new capabilities relevant 1o the
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engine problem, was developed on the IBM SP2, and makes extensive use of the message-passing
protocol MPI just provided by IBM for this system.

The aeroelastic model used for the simulation presented here comprises one half of a blade row
that pertains to the compression stage of a GE EEE turbofan engine. This reduced but realistic
configuration was used to test the fluid and structure mesh generators, mesh matchers and analysis
modules. This test model has approximately 185,000 degrees of freedom. This simulation is a
prelude to the treatment ot more complex configurations involving two to four full-circle blade
rows. Such models are expected to contain up to 1.5 million freedoms, which is close to the
computational limit on present massively parallel computing platforms such as the IBM SP2 and
the Cray T3E.

The elastic structure contains 17 turbine blades attached to a fixed hub. The finite element model
was directly generated, through step rotations, from a single GE EEE fan-stage blade NASTRAN
model provided by Scott Thorpe of NASA Lewis Research Center. A very coarse model using
triangular shell elements with “drilling” rotational degrees of freedom Each blade has 50 nodes,
72 triangular elements and 270 degrees of freedom. The structural mesh is half of that shown in
Figure IV.1 of Appendix IV. For parallel analysis the structural mesh was kept as a single subdomain
because of its low number of total degrees of freedom.

The fluid mesh was constructed in three steps. Following advice from David Miller of NASA LeRC,
S-interpolation between two adjacent blades surfaces was used to generate a regular hexahedral
mesh. Each hexahedron was then divided into six tetrahedra as expected by the PARFSI fluid solver.
This mesh unit was step-rotated around the hub to fill the 16 spaces between the 17 blades. The tull
mesh was translated forward and backward to generate two inter-row transition volumes. The fluid
mesh is half of that shown in Figure [V.1 of Appendix I'V. The mesh contains approximately 185,000
defrees of freedom. For parallel processing a decomposition into 16 subdomains was performed
by the TOP/DOMDEC preprocessor.

A uniform longitudinal flow of 0.8M is applied to the nodes of the fluid mesh. It is left to runs
through the rigid blades until a steady state is reached. Then the blades are released except for
the end ones which are maintained fixed. The blades are set into motion by the transverse forces
induced by their skew angles. and vibrate approximately in phase. The total physical simulation
time was 20 seconds. with 400 times steps performed in the structure and 8.000 steps on the fluid.
Elapsed simulation time, using 28 processors of the NAS IBM SP2, was approximately 20 minutes.
A color videotape of the dynamic response was prepared using the TOP/DOMDEC visualization
system and provided to NASA Lewis.

5.3 Parallel Analysis of a Full Circle, Multiple-Row Configuration

Our final engine model involves a full circle of compressor blades as well as one and two-row
configuration. This work is described in detail in Appendices [V and V.

6. FUTURE RESEARCH AREAS

In our opinion. the following research areas represents a natural continuation of the work funded
under the present grant. The tasks outlined below represent a balanced combination among analysis
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of more complex and demanding multirow configurations, improvements in the physics of the
coupled model, ability to receive ENG10 inputs and compare three-dimensional stage results to
those of the ENG10 axisymmetric idealization.

6.1 Multirow Fan Blade Simulations

It would be desirable to continue the aeroelastic simulations initiated with the model described
in Section 5 fan stage until achieving the practical limits of the IBM SP2 and Cray T3D. Euler
fluid models will be generally used to speed up the simulations, but Navier-Stokes models may be
occasionally run to check the formation of shocks especially in unsteady conditions.

These models may be used as focus problems to explore the advantages of the present approach as
well as to assess limits imposed by practical availability of computer resources such as processing
power, physical memory and archival storage and communication bandwidth to move data from
remote supercomputer sites to the visualization laboratory.

6.2 Unsteady Flow Analysis

While PARFSI is intrinsically designed to provide time-accurate unsteady analysis, its original
development for the exterior aeroelastic flutter problem constrained the ability to provide time-
dependent boundary conditions on the exterior fluid boundaries. This work would provide the
ability to step up or decrease the engine inlet low trom one operating condition to another (or to
an emergency condition) and conduct to drive the unsteady analysis.

6.3 Differential Rotation

Presently PARFST assumed that the Auid mesh is Eulerian but inertial. This task provides the ability
to model correctly the engine rotation by letting the fluid mesh rotate as arigid body at a given speed.
This speed may change during the course of the analysis if a time-accurate unsteady capability is
incorporated.

Provision of this capabtlity requires two modeling enhancements in the fluid model: (1) rotation
induced source terms in the fluid. and (2) accounting for the gap between the rotating blades and
the inertially fixed case with an attached non-rotating fluid mesh. The latter is truly a leading-cdge
research item that has not been previously considered to this level of modeling detail.

6.4 Geometric Stiffness Effects

Blade rotation produces a high tension stresses in the blades. which in turn affects their effective
stiffness through the geometric stiffness matrix of the shell elements used in the finite element
discretization. This capability would provide the necessary rotation-speed-to-stress feedback in the
structural analyzer.

6.5 Other Coupling Effects

Coupling of structural material properties with the thermal solution provided by ENG10 may be
considered during if interaction of thermal and aeroelastic effects are deemed important. Such
ctfects may be of interest for blades fabricated with advanced composite materials.
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Appendix 1

Theoretical Background on Viscous Flow Computations

Summary

The following material, extracted from a recently published paper by Farhat, Fezoui and Lanteri [3],
summarizes the theoretical foundations of our parallel Navier-Stokes computations on unstructured
meshes. Although the article focuses on CM-2 computations carried out during 1990-1991, it also
presents implementation considerations applicable to the present project.

I.1 Introduction

Previously we have reported on our experience with performing two-dimensional structured com-
pressible flow computations on the Connection Machine CM-2 (Saati, Biringen and Farhat [1],
Lanteri, Farhat and Fezoui [2]). We have found that this massively parallel processor is particularly
well suited for explicit computations on regular grids. For grids that result in a high virtual processor
ratio (VPR or VP ratio), using the NEWS fast communication mechanism, we have measured the
communication component of the simulation time to represent typically less than 10% of the total
CPU time. We have concluded that on a 64K machine (65536 processors), efficiency rates in the
neighborhood of 2 gigaflops are attainable. We have also found that for both inviscid (Euler equa-
tions) and viscous (Navier-Stokes equations) flow structured computations, a 16K CM-2 (16384
processors) can be 4 and 6 times faster than one CRAY-2 processor, respectively.

We focus here on massively parallel viscous flow computations using fully unstructured grids. In
Section 2, we formulate the problem to be solved, and in Section 3, we derive first-order and
second-order spatial schemes that are characterized by an upwind integration of the convective
fluxes. Second-order accuracy is achieved through a Monotonic Upwind Scheme for Conservation
Laws (MUSCL) technique. An explicit, and therefore nicely parallelizable, Runge-Kutta method is
selected for time integration: it is summarized in Section 4. Because the mesh irregularities inhibit
the use of the NEWS mechanism. interprocessor communication is bound to be carried out via the
slower machine router. If a trivial processor mapping s used. up to 60% of the total CPU time
is consumed in communication requirements. This bottleneck has been previously analyzed and
documented by Farhat, Sobh and Park [3] for massively parallel finite element computations in solid
mechanics problems. It has also been recently addressed by several other investigators for fluid
Aow computations. In particular, Shapiro [4] has proposed the use of a graph coloring algorithm to
allow a particular implementation of the communication steps which reduces the communication
costs by a factor of two. Hammond and Barth [S] have developed a vertex-based partitioning
scheme for inviscid flow computations which attempts to minimize both the computational and
communication costs associated with unstructured grids. Here. we present a strategy for mapping
thousands of processors onto an unstructured grid which leads to an efficient scheme for carrving
out communications of an arbitrary pattern. The key elements of this strategy arce discussed in
Scction 5. These include the selection of an appropriate parallel data structure. the partitioning ot a
given unstructured grid into subgrids. and the mapping of each individual processor onto an entity
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of these subgrids. Combining this mapping strategy with a communication compiler reduces the
communication overhead by an order of magnitude and brings it down to 15% of the total simulation
time. In Section 6, we apply our massively parallel code and its highly vectorized variant to the
simulation of low Reynolds number chaotic flows. Measured performance results indicate that for
such computations on unstructured grids, an 8K CM-2 with single precision floating point hardware
1s as fast as one CRAY-2 processor.

1.2. Mathematical modeling

First we recall the mathematical problem to be solved, and introduce the notation that is used in the
sequel.
1.2.1. Governing equations

Let © < 7 be the flow domain of interest and I" be its boundary. The conservative law form of
the equations describing two-dimensional Navier-Stokes flows is given by :
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where p is the density, U = (u, v) is the velocity vector, £ is the total energy per unit of volume.
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p is the pressure, and € is the specific internal energy. The variables p, E, p, U, e, and the
temperature T are related by the state equation for a perfect gas:

| —
p=y—INE=splU] ()

and by:

E [ —
6.‘=C,,T=——;(HUH“) (5
P 2

where y denotes the ratio of specific heats.

The components of the Cauchy stress tensor 7,,, 7, and t,, are given by:

2 <72)u EJU') 2 (731) ou ) o N é)v) o
T = -\ i— — — Tyww=—M} 22— — — Tyw = —_— —_— (O
wEIM Y T CEIETHY T e CEAY T
where 0 and & are the normalized viscosity and thermal conductivity coefficients. Two characteristic
. . polUoLo .
numbers appear in the above equations; the Reynolds number Re¢ = ———— where py. Uy. Ly
Ho
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Fig. I.1. The computational domain

and p1p denote respectively, the characteristic density, velocity, length and diftusivity of the flow
. . 0C
under consideration, and the Prandtl number Pr = %
()

We consider the initial and boundary value problem (IBVP):

ot ¢

DWW |

LV TFwWy = —V. R(W) (Y.r)ethwt*
—
X

W (7(’,0) = Wy(X) eQ 7

—_—
X
—
X el =00

%% (Yr) = Wr(_)?)

where W, and W are specified functions, and focus on finding a weak solution of (7) that is
amenable to massively parallel computations.

We arc mostly interested in external flows around airtoils. Theretfore, we consider the case where
. . . . . - —_—

the computational domain € is delimited by the boundary I' = I'), U I'.. We denote by v the

outward unit-normal at a given point of " (Fig. L1).
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In the far field, we assume that the viscous effects are negligible so that the flow is uniform. We
adopt a formulation where the physical variables are non-dimensionalized. The free-stream vector
W is given by:

S |
P = 1 T])x::(cosa) px:y— (8)

Ly R
S o Mjc

where o is the angle of attack and M is the free-stream Mach number. On the wall boundary [,
we impose the no-slip condition and specify the temperature:

U=0 T=1, 9)

We do not impose any boundary condition on the density. Therefore, the total energy per unit of
volume and the pressure on the wall are given by :

E=pCT, p=(y—-hHE (10)

1.3. Spatial discretization
[.3.1. Preliminary

The flow domain €2 is assumed to be a polygonal bounded region of W>. Let 7, be a standard
triangulation of £2, and /i the maximal length of the edges of 7;,. A vertex of a triangle A is denoted
by §;, and the set of its neighboring vertices by K (/). Ateach vertex S;. a cell C, is constructed
as the union of the subtriangles resulting from the subdivision by means of the medians of each
triangle of 7, that is connected to §; (Fig. A2). The boundary of C, is denoted by #C,. and the unit
vector of the outward normal to 4C; by Vo= (v, ;). The union of all of the constructed cells
forms a non-overlapping partition of the domain Q:

ny

e=|jc (11)

f=I
For each cell C,, a characteristic function W; is defined as :

\1’,’(—7): 1 i X e, ()
0 otherwise

Also, the following discrete spaces are introduced:
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Fig. A2. Cell definition in an unstructured grid

Vh = {Uh | Uy € C“(Q), Uy 1A € P, VA€ 771}

5 (13)
Wy, ={uy | vy € L7(R), vy |¢,=v; =constant, { = I,....ns)

where P is the space of polynomials in two variables and of degree 1. Clearly. any function f
belonging to V), is uniquely determined by its values f(S$;) at each vertex S;. and can be expressed
as:

FX =3 fsonX) (14)

=1y

where (N, }'=" is a basis of V. Finally, it is noted that a natural bijection between the spaces V7,
=1 y j] p

and W, can be constructed as:

YieV, . SUXN= Y fSHI¥(X) (15)
i=l.ns
3.2 Vuriational formulation and first order spatial approximations
A variational formulation of the IBVP (7) goes as follows:
Find W, € (V,)*. Yo, € V)
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oW,
i%‘Phdxdy'{'-/—V>-?("V/,)(p;,d.\fd_\—'
Q2

Q (16)

l - =
= / V. R (Wye,dxdy

We construct a mixed finite volume/finite element (Galerkin) approximation for solving the above
problem by introducing appropriate schemes for computing the left and right-hand-side integrals
of (16). Chosing ¢, as the shape function N; associated with the node S; and applying the operator
S to the left hand side of (16) leads to a mass-lumped variational approach which transforms the
above equation into:

oW, — —
dxdyv + V. F(W)dxdy

ot
¢ ¢
(17)
I - —
= / V.R (‘V/,)N,‘d.\‘d_\r"
Re
SupN,
where SupN,;, = U A . Using Green's formula for the convective term and integrating by part
.’_\..\',‘E_A
the diffusive one leads to:
(.)H//, — —
- dydv + F(W,). vV, do
at
C, 3C,
| —> -2
; Ao
=~ > / R (W) . VN2dxdy (18)
A5 =A
A
=g —
+ R(W,). v, Ndo
Re
Prul™

where N2 is the restriction of N, to triangle A. Finally, we drop the right hand side boundary
integral as we enforce the viscous boundary conditions in a strong form on 'y and neglect the
viscous effects on ', so that equation (18) simplifies to:
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AW
f “ldxdy+ Y f?(w,,).—u’,,»do <1>

Jektn, e

+ / FW,). Vido <2 >

ac00,

+ / '_.F)(W;,')._U),-da <3 >

aC,NE

Z / W;,)VN dxdv < 4 >
Sie

where W, is the specified value of W, at the boundaries.

The reader should note that the above tformulation leads to a locally one-dimensional computation
of each convective term, along the normal direction o . For this purpose, the boundary §C; of the
cell C, is split into bi-segments dC;; which join the middle point of the edge [S; ;] to the centroids
of the triangles having both of §; and §; as vertices (Fig. A3), and the integral < | > is evaluated
1S

/? (Wp). ),-jd()': Z ?(0) /7,‘]({0’ 20

/&I\m’c( JeK) AC;,

- ~ - . ~ . . ~
where F (U) is some approximation of the convective lux computed at the interface between cells
C, and C;.

s

Following Fezoui and Stoufflet [6], we choose F (U) to be a numerical flux function ® associated
. . . . |

with a first-order accurate upwind scheme (Van Leer [7]). It is denoted here by H/,‘/ ', where the

superscript ' emphasizes the first order accuracy, and can be written as:

H = dop (W, W, 7)) 2N

where W, = W, (S;) and W, = W, (S;). For example, the following numerical flux functions can

be used to construct H”’.

o Roe's Scheme [8]

N FWU. Y+ FV.T N
oh (U.v.7) = o )f Vv (22)
where d (U. V. 7) is a numerical diffusivity defined as:
— = (v - U) ~a
d(U V. T) =l A(W.T) — (23)
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Fig. A3. Splitting of 9C;,
and W is some mean value of U et V.
o Steger and Warming's scheme [9]
O (Vv V)= (0T U+ A (V. TV (24)
where A= A" + A4 and | 4 |= AT — A .

The viscous integral < 4 > is evaluated via a classical Galerkin finite element P 1 method which

results in a centered scheme. Since the approximations of the physical variables are taken in V).
A
the components of the stress tensor and those of VN are constant in each triangle. The velocity

vector in a triangle is computed as:

i 7' (25)

k=1l ke A

Ua=

| —

Conscquently, the viscous fluxes are evaluated as:

—> — X ' UNIA . (')Ni“\
Z /‘R,(W,,).VN, dxdy = Z urea(A)(R_\ —— + 57— (26)
x Jdv
A

ALS A
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where R and S, are the constant values of R(W) and S(W) in the triangle A.

1.3.3. Higher order extension

The numerical integration with an upwind scheme described above leads to a spatial approximation
that is only first-order accurate. Here, we focus on constructing a second-order accurate solution
without changing the space of approximations. We develop a second-order scheme that is an
extension of Van Leer’s MUSCL method [7] to the case of unstructured meshes.

Usually, a second-order approximation requires the evaluation of the gradient of the solution at each
vertex. Clearly, the gradient of a function vj, of V, is constant in each element and discontinuous in
the low domain. Following the MUSCL method, one way to achieve second-order spatial accuracy
is to evaluate the fluxes with extrapolated values W;;, W}, at the interface dC; N 9C,;. Basically,
this leads to substituting H,‘l” in the previous scheme by HI.(/.Z) which is given by:
(2] —>
Hij = @r, (Wi Wi Vi)
— — )
W, =W + (VWSS (27)

1, TG und oo
W, =W, - LV W)5S

. _—_> . . . . -
where the approximate nodal gradients ( V W)ﬁ/ are obtained via a B-combination of centered and
fully upwind gradients :

(VWY = (1 — BT W) 4 gawH (28)

- Sw\Cent Ty A=0 o
Here, a centered gradient (VW) " = (VW)#=" can be chosen as any vector satisfying:
Cent ¢ ¢ b
(VW) .58 = W, — W, (29

. . - . . . S U
A nicely parallelizable scheme for computing the upwind gradients (VW) "

- , g Upw o B=1 - ~ co
First, we note that (VW), = (VW)= and from (28) we derive:

;1 goes as tollows.

— fA=

(67‘7)54/,)1:' = 2(VW),

1

[

r—— -
— (VW) (30)

We compute the halt-upwind gradients (8 = 1y via a linear interpolation of the Galerkin gradients
computed in each triangle of C;, so that:
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—
/ VW, dxdy

1
G
/""d-" (31)
Cr
| area(T) & =
= W Vg,
area(C;) Z 3 Z ¥

Ae(; k=1keT

Finally, we evaluate the nodal gradients using the following third-order biased scheme:

-1 2 - | _
W) = 2EW 4 W)

2 0 | - _

- ;(\W’V)f‘“#; VW2 —(WV){‘“’) (32)
[ o 2 = p=s

:i(m)'ﬂ_uﬁ(VW)? :

1.3.4. Boundarv conditions

The second term < 2 > and the third term < 3 > of the right-hand side of (19) contain the physical
boundary conditions. These are represented by the vector W), which involves quantities that depend
on the interior values of W, and quantities that are determined by the physical boundary conditions.

Wall boundary : the no-slip condition is enforced in a strong form (9, 10) so that the corresponding
boundary integral < 2 > does not need to be evaluated.

Inflow and outflow boundaries : at these boundaries, a precise set of compatible exterior data
which depend on the flow regime and the velocity direction must be specified. For that purpose. a
plus-minas lux splitting is applied between exterior data and interior values. More precisely. the
boundary integral < 3 > is evaluated using a non-reflective version of the flux-splitting of Steger
and Warming [9] :

f FW).Vido = AW, T 1) W + AT(W,, T 0). Wae (33)

aC, N

1.4. Time discretization

The resulting semi-discrete fluid flow equations can be written as:

dW
— + (W) =90 (34)
dt



Because it lends itself to massive parallelism, the explicit Runge-Kutta method is selected for
integrating the above equations. A 3-step variant is used here. It is summarized as :

W(()] — Wn
At

WM':W(U)_I_/\V/(W(I\‘~I)) k= ]'23 (35)

w" + 1 — W(.U

The above scheme is often referred to as the low-storage Runge-Kutta method as only the solution
at substep o — | is used to compute the one at substep «. It is third-order accurate in the linear case,
but only second-order accurate in our case.

1.5. Parallel implementation on the Connection Machine CM-2

Clearly, expressions (19) and (27-35) reveal that both the spatial and temporal integrations are in
principle nicely parallelizable. In this section, our interest lies in investigating the most efficient
way to implement these computations on a Single Instruction Multiple Data (SIMD) massively
parallel computer such as the Connection Machine CM-2. Special care is given to interprocessor
communication because mesh irregularities: (a) inhibit the exploitation of the NEWS grid. so
that the relatively slow router must be used, and (b) induce a different amount of communication
steps within each processor, which is not particularly desirable on a SIMD machine. Rather than
overviewing the CM-2, we refer the reader to the technical summary of Thinking Machines [10]
for architectural details, and to Farhat, Sobh. and Park [3] for an in-depth analysis of interprocessor
communication on the CM-2 when computing over an irregular mesh.

1.5.1. Parallel data structire

Behind the performance of any parallel algorithm lies the choice of the corresponding parallel
data structure. The latter is closely related to both the entity and the task to be assigned to each
processor. Therefore, all of the computational. communication and memory requirements should
be considered before the distributed data structure is determined. For the mixed finite volume/finite
clement method presented here. we consider four candidates for a fundamental entity (Fig. A4):

e the vertex S;,

e the edge £;; joining the vertices §; and §j,

e the clement (here the triangle) A;j; connecting the vertices ;. S; and §;,
e and the cell C; defined in Section 3.1.

Memory considerations

While regular grids are most often characterized (in terms of memory requirements) by their number
of vertices Ny . irregular triangular grids can be also characterized by either their number of elements
N . or by their number of edges N.. Here, we assume for simplicity that 7, is characterized by its
number of vertices. Euler's relations for a triangulation state that :
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4 ik

Fig. Ad. Fundamental entity candidates

NV +NA —N[:‘ =1
(36)
N — Npy = 3N,
where Ngy denotes the number of vertices at the boundary of the triangulation. This implies that :

Ny = 2Ny and Np = 3Ny (37N

Therefore, if 7), is designed. for example, so that its number of vertices matches a given Connection
Machine size, the VP ratio associated with each data structure candidate varies as indicated below:

Vertex Edge Element Cell

VPR l 3

o

The reader should note that for the edge case, the machine automatically selects a VP ratio of 4.
since it 1s the closest power of two to the theoretical VPR. Clearly, the vertex and cell entities are
the best candidates on the sole basis of efficient memory usage.

Operation count

Ihe numerical algorithms discussed in Section 2 and Section 3 can be organized around three basic
o fan
computational steps :

(Step a) evaluation of the Galerkin gradients (32),
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(Step b) evaluation of the diffusive fluxes (26),

(Step ©) and evaluation of the convective fluxes (27).

While Step (¢) is most efficiently performed using edge-wise computations, Step (a) and Step (b)
are inherently element-level calculations. Therefore, whatever fundamental entity is selected, it
must contain both cdge and element information, which rules out the edge E;; data structure.

On the other hand in an element-based partition, every triangle A provides direct access to all of
the three cdges E,;, Ej; and E;;. However in that case, two VP sets must be used; one containing
N processors which store triangle related data (geometrical data), and another one containing Ny
processors which store vertex related data (physical data). Otherwise, if only one set of virtual
processors is used and assigned to both triangle and vertex data, a nodal result would be duplicated
in as many processors as there are triangles connected to that vertex.

The vertex entity S; is an effective candidate only when augmented with the auxiliary data structures
that can handle the data associated with the elements and edges connected to a given vertex — that
is, when transtformed into a cell data structure.

Finally, we note that the cell entity stores both vertex and element data, and therefore provides access
to all of vertex, element and edge information. Consequently, only element and cell partitions are
retained for further discussions.

Next. we evaluate the operation count for each of Step (a), Step (b) and Step (c), assuming an
element- or cell-based data structure. We denote by C* and C§, the number of arithmetic operations
associated with one edge computation during Step (c), and with one triangle computation during
Step (a) and Step (b), respectively. The computational complexities characterizing the two retained

candidates are tabulated below.

Element Cell
Step (¢) 2x Ck 2xCt
Step (a) + Step (b) C3, IxCH

In both an element- and cell-based partition, an edge is shared by two virtual processors. so that the
Hux H,'/;) across [S; 8] is computed twice. Only an edge partition would eliminate these redundant
computations, but that choice has already been eliminated. In a cell-based partition, a triangle
Ajjs is shared by three virtual processors, and therefore additional redundant computations are
generated.

Communication costs

The computational steps discussed above require four communication steps denoted here by (¢,
(€2), (¢3), and (¢4). These are discussed below for the element and cell parallel data structures.

First. we consider the case of an element-based partition. During the first communication step
(¢1). cach virtual processor assigned to a triangle A, gets the physical states at vertices S;. §;
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and §; from neighboring processors. Then, the computations in Step (a) and Step (b) are carried
out. During the second communication step (c2), the element-wise results are sent back to the
virtual processors holding vertex data. The latter virtual processors use these values to compute the
nodal gradients (32) and diffusive fluxes (26). In step (¢3) the nodal gradients are communicated
to neighboring processors. Next. each virtual processor evaluates three second-order convective
fluxes (15) across the three edges connected by triangle A, ;4. During the last communication step
(c4), the edge-wise fluxes are sent to the virtual processors holding vertex data.

Communication with a cell-based partition is more complex, as each cell may have a different num-
ber of neighbors. However, fewer communication steps are needed because each virtual processor
stores within its local memory all of the element-wise values that are necessary for the evaluation
of the nodal gradients and the ditfusive fluxes, as well as the elemental convective fluxes.

The communication count associated with the four steps (c1) to (c4) is tabulated below for each of
the two retained data structure candidates. N7 denotes the maximum number of neighboring
cells.

Element Cell

(cl) 3 /Vl'lltl‘(i’,:' h
(c2) 3 0
(€3) 3 neinh
(c4) 6 0

Selected candidate

The operation and communication counts are summarized below for both the element and cell data
structures. Equations (36) are used to express the results in terms of the number of vertices in the
mesh.

Element Cell
Operation count (6 x CF4+2xC3) x Ny (6x CE4+6xCY)x Ny
Communication count 30 x Ny 12 x Ny

Clearly, redundant arithmetic operations can be avoided only at the expense of additional communi-
cation characterized by an irregular pattern, which is usually not beneficial on a massively parallel
processor such as the CM-2. Therefore, we have chosen the cell-based parallel data structure and
have accepted the additional cost of redundant flux computations. Hammond and Barth [5] have
invoked a graph theory result due to Chrobak and Eppstein [17] to chiminate redundant edge-based
flux computations for Euler flows. This result states that for any planar graph. there exists an
orientation of the edges such that no vertex has more than three edges directed out from it. This
means that there exists a cell partition where no processor needs to compute the convective fluxes
across more than three edges of the computational cell. However. this graph theory result does not
apply for our viscous computations because these also include element-based operations.
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WIRE 10

WIRE 8

Fig. AS. Grid decomposition with reduced wire-contention

1.5.2. Grid decomposition and processor mapping

Efficiency in arbitrary communication on the CM-2 requires the minimization of both the “ham-
mering” on the router — that is. wire contention, and the distance that information has to travel —
that is. the number of hops between the sender and receiver processors. Here, this implies that : (a)
adjacent cells must be assigned, as much as possible, to directly connected processors or processors
that are lying in directly connected chips. and (b) contention for the wire connecting neighboring
chips must be reduced.

In a first step. the unstructured grid is decomposed into a series of subgrids each containing 16
adjacent numerical cells. Each subgrid is assigned to a certain CM-2 chip that is subsequently
identified. so that adjacent cells within a subgrid are assigned to directly connected processors lying
in the same chip. As a result, off-chip communication is needed only across the subgrid boundaries.
Wire contention is reduced if each of the defined subgrids is surrounded by the largest possible
number of neighboring subgrids. Indeed, wherever a subgrid boundary is shared with several other
subgrids, off-chip communication is split between distinct chips and is distributed across several
of the available inter-chip wires (Fig. A5). On the other hand. if for example a subgrid is adjacent
only to two other subgrids, a maximum of two wires can be used during off-chip communication.
which may create a severe wire contention that would serialize communication and signiticantly
increase its cost. Here, we use the mesh decomposer of Farhat [1 1] which has proven to be very
etfective at reducing wire contention on the CM-2 (Farhat, Sobh and Park [3]).

The next step is to reduce the distance that information has to travel during off-chip communication.
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that is when data is exchanged between centers of cells that are assigned to processors lying on
different chips. This can be achieved by assigning adjacent subgrids as far as possible to directly
connected chips. A combinatorial optimization-like procedure known as Simulated Annealing (see,
for example, Flower, Otto and Salama [[2]) is probably the most popular technique for tackling
this mapping problem. However, it is a very expensive procedure’which has often proved to be
impractical. Alternative heuristic-based schemes have been developed by several authors including
Bokhari [13], Farhat [14], and recently Hammond and Schreiber [15]. In this work, we have adopted
the mapper of reference [14]. It is based on a combined greedy/divide and conquer approach and
ts tuned for hypercube topologies.

A detailed analysis of interprocessor communication on the CM-2 for unstructured grids can be
found in Farhat, Sobh and Park [3]. In that reference, it is shown that mesh irregularities induce an
MIMD (Multiple Instruction Multiple Data) style of programming for the communication phase
which dominates the cost of communication. It is also suggested that since the irregular pattern
of communication is fixed in time, a considerable improvement can be achieved if that pattern is
evaluated during the first time step, then compiled or stored in the CM-2 for re-use in subsequent time
steps. However, no software was available at that time for validating the proposed communication
strategy. Recently, a communication compiler prototype has become available (Dahl [16]) and can
be used for storing the routing pattern. In Section 6. we report on its performance.

1.6. Numerical Experiments

(This Section reports on numerical experiments on the CM-2 and Cray 2. Since airfoil problems
are of limited important for the present research, they are not presented here.)

I.7. Closure

Mixed finite volume/finite element spatial schemes for fully unstructured grids are developed and
implemented on the CM-2_ and applied to the simulation of two-dimensional viscous flows. Second-
order accuracy in the discretization of the convective fluxes is achieved through a Monotonic
Upwind Scheme for Conservation Laws (MUSCL) technique. The diffusive fuxes are computed
using a classical Galerkin finite element method. and the resulting semi-discrete equations are time
integrated with an explicit Runge-Kutta algorithm.

A strategy for mapping thousands ot processors onto an unstructured grid is presented. [ts key
elements are given by the sclection of an appropriate parallel data structure, the caretul partitioning
of a given unstructured grid into specific subgrids, and the mapping of each individual processor
onto an entity of these subgrids. Whenever the communication patterns are compiled during the
first time step, the total time clapsed in interprocessor communication using the router is drastically
reduced to represent only 5% of the total CPU time of the simulation.
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Appendix II

Parallel Staggered Algorithms for the Solution

of Three-Dimensional Aeroelastic Problems

Summary

This Appendix outlines recent developments in the solution of large-scale three-dimensional (3D) nonlinear
aeroelastic problems on high performance. massively-parallel computational platforms. Developments in-
clude a three-field arbitrary Lagrangian-Eulerian (ALE) finite volume/element formulation for the coupled
fluid/structure problem. a geometric conservation law for 3D fow problems with moving boundaries and
unstructured deformable meshes. and the solution of the corresponding coupled semi-discrete equations with
partitioned heterogeneous procedures. We present a family of mixed explicit/implicit staggered solution algo-
rithms, and discuss them with particular reference to accuracy, stability, subceycling, and parallel processing.
We describe a general framework for the solution of coupled aeroelastic problems on heterogeneous and/or
parallel computational platforms, and iflustrate it with some preliminary numerical investigations of transonic
aerodynamics and aeroelastic responses on several massively parallel computers. including the iPSC-860.
Paragon XP/S. Cray T3D. and IBM SP2. The work described here was carried out by P.-S. Chen. M. Lesoinne
and P. Stern under supervision from Professor C. Farhat.

II.1. INTRODUCTION

In order to predict the acroclastic behavior ot flexible structures in fluid flows. the equations of
motion of the structure and the fluid must be solved simultancously. Because the position of the
structure determines at least partially the boundaries of the fluid domain. it becomes necessary to
perform the integration of the fluid equations on a moving mesh. Several methods have been pro-
posed for this purpose. Among them we note the Arbitrary Lagrangian Eulerian (ALE) formulation
[7], dynamic meshes [3], the co-rotational approach [8.11.24]. and the Space-Time finite element
method [38].

Although the aeroclastic problem is usually viewed as a two-field coupled problem (see for example.
Guruswamy [22]), the moving mesh can be viewed as a pscudo-structural system with its own
dynamics, and therefore, the coupled aeroelastic system can be formulated as a three-field problem.
the components of which are the fluid. the structure. and the dynamic mesh [26]. The semi-discrete
cquations that govern this three-way coupled problem can be written as follows.
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+t‘ill((q) — t!’.\‘l(w([)'x) (l)

where t denotés time. x is the position of a moving fluid grid point, w is the fluid state vector,
V results from the Hux-split finite-element (FE) and finite-volume (FV) discretization of the fluid
equations, F¢ is the vector of convective ALE fluxes, R is the vector of diffusives fluxes, q is the
structural displacement vector, f"' denotes the vector of internal forces in the structure, ' th
vector of external forces, M is the FE mass matrix of the structure, M. D and K are fictitious mass,
damping and stitfness matrices associated with the moving fluid grid, and K, 1s a transfer matrix
that describes the action of the motion of the structural side of the fluid/structure interface on the
fluid dynamic mesh.

For example, M=D=0and K = K* where K" is a rotation matrix corresponds to a rigid
mesh motion of the fluid grid around an oscillating airfoil, and M = D = 0 includes as particular
cases the spring-based mesh motion scheme introduced by Batina [3], and the continuum based
updating strategy described by Tezduyar [38]. In general, K and K are designed to enforce
continuity between the motion of the fluid mesh and the structural displacement and/or velocity at
the flutd/structure boundary U g /g(f):

X))y =g¢(tr) on F,L‘/'_g'(f) )
.(‘(1):(}”) on r/."‘/g(f) h

Each of the three components of the coupled problem described by Egs. (1) has different mathe-
matical and numerical properties, and distinct software implementation requirements. For Euler
and Navier-Stokes flows. the fluid equations are nonlinear. The structural equations and the semi-
discrete equations governing the pseudo-structural fluid grid system may be lincar or nonlinear.
The matrices resulting from a linearization procedure are in general symmetric for the structural
problem, but they are typically unsymmetric for the fluid problem. Moreover. the nature of the
coupling in Egs. (1) is implicit rather than explicit, even when the fluid mesh motion is ignored. The
fluid and the structure interact only at their interface, via the pressure and the motion of the physical
interface. However, for Euler and Navier-Stokes compressible flows. the pressure variable cannot
be easily isolated neither from the fluid equations nor from the fluid state vector w. Consequently.
the numerical solution of Egs. (1) via a tully coupled monolithic scheme is not only computationally
challenging, but unwieldy from the standpoint of software development management.

Alternatively, Egs. (1) can be solved via partitioned procedures [4,9.32], the simplest realization of

which are the staggered procedures |31]. This approach offers several appealing features. includ-
ing the ability to use well established discretization and solution methods within each discipline.
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simplification of software development efforts, and preservation of software modularity. Tradition-
ally, transient aeroelastic problems have been solved via the simplest possible staggered procedure
whose typical cycle can be described as follows: a) advance the structural system under a given
pressure load, b) update the fluid mesh accordingly, and ¢) advance the fluid system and compute a
new pressure load [5.6.35.361. Some investigators have advocated the introduction of a few predic-
tor/corrector iterations within cach cycle of this three-step staggered integrator in order to improve
accuracy [37], especially when the fluid equations are nonlinear and treated implicitly [34]. Here we
focus on the design of a broader tamily of partitioned procedures where the fluid flow is integrated
using an explicit scheme. and the structural response is advanced using an implicit one. We address
issues pertaining to numerical stability, subcycling, accuracy v.s. speed trade-offs, implementation
on heterogeneous computing platforms, and inter-field as well as intra-field parallel processing.

We begin in Section 1.2 with the discussion of a geometric conservation law (GCL) for the finite-
volume approximation of three-dimensional flows with moving boundaries. In Section 1.3 we
mntroduce a partitioned solution procedure where the fluid low is time-integrated using an explicit
scheme while the structural response is advanced using an implicit scheme. This particular choice of
mixed time-integration is motivated by the fotlowing facts: (a) the aeroelastic response of a structure
ts often dominated by low irequency dynamics, and therefore is most efficiently predicted by an
implicit time-integration scheme, and (b) we have previously developed a massively parallel explicit
FE/FV Navier-Stokes solver that we wish to re-use for acroelastic computations. Two-dimensional
versions of this solver have been described by Farhat and coworkers [10,12,25].

In practice. the stability limit of this partitioned procedure has proved to be governed only by the
critical time-step of the explicit fluid solver. In Section I1.4, we describe a subcycling procedure that
does not limit the stability properties of a partitioned time-integrator. In Section I1.5. we address
important issues related to iter-field parallelism and design variants of the algorithm presented
in Scction [L.3 that allow advancing simultancously the fluid and structural svstems.  Section
11.6 tocuses on the implementation of staggered procedures on distributed and/or heterogeneous
computational platforms. Finally. Section 117 illustrates the work presented herein with some
preliminary numerical results on four parallel computers: Intel iPSC-860. Intel Paragon XP/S.
Cray T3D. and IBM SP2. These results pertain to the response of an axisymmetric engine model
and of a 3D wing in a transonic airstream.

[1.2. A GLOBAL CONSERVATION LAW FOR ALE-BASED FV METHODS

I1.2.1. Semi-discrete flow equations

Let (1) ¢ R* be the flow domain of interest. and 1" (1) be its moving and deforming boundary. For
simplicity, we map the instantancous deformed domain on the reference domain €2(0) as follows:

Yy =x(&. 1), =T (3
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Figure [1.1. A three-dimensional unstructured FV cell

The ALE conservative form of the equations describing Euler flows can be written as:

D(JW) -
S L v FwY =0,
at £ 4

FUW)y = F(W)—xW

where J = det(dx/d§) is the Jacobian of the frame transformation & — x, W is the fluid state
vector, F* denotes the convective ALE fluxes. and x = %ﬂg is the ALE grid velocity. which
may be different from the fluid velocity and from zero. The fluid volume method for unstructured
meshes relies on the discretization of the computational domain into control volumes or cells C;.
as illustrated in Figure I1.1.

Because in an ALE formulation the cells move and deform in time. the integration of Eq. (4) is
first performed over the reference cell in the & space

/ J(JW)
cay A g

&

dQ; +/ JV F WYdQe =0 (5)
o

Note that in Eq. (5) above the time derivative is evaluated at a constant &: hence it can be moved
outside of the integral sign to obtain
d

dr Jeqm

W J (IQE +f V\f((W) J dQE =0 (6)

CoAm

Switching back to the time varying cells, we have

d

— W dQ, + / V. F W)y dQ, =0 (N
dt (0 Coto
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Finally, integrating by parts the last term yields the integral equation

/
£ W d, + F(W)ido =0 (8)
dt Jen IC (D)

A Key component of a FV method is the following approximation of the flux through the cell
boundary odC;(t):

Fi(w. X, %) = Z/ (FSW,, %) + F (W, %) i do (9)
— Jac, ,x)

where W; denotes the average value of W over the cell C;, w is the vector formed by the collection
of W;, and x is the vector of time dependent nodal positions. The numerical flux functions F¢ and
JF¢ are designed to make the resulting system stable. An example of such functions may be found
in Ref. [1]. For consistency. these numerical fluxes must verify

FAW, X))+ F (W, x) = F(W) (10)

Thus. the governing discrete equation is:

/
S VW) + F(w.x.x) =0 (n

dt
Vi =/ d§2, (12)
.t

ts the volume of cell C;. Collecting all Egs. (11) into a single system vields:

/
%(VW)-{—F(W,X.X) —0 (13)
[¢

where V is the diagonal matrix of the cell volumes. w is the vector containing all state variables
W, and F is the collection of the ALE fluxes F;.

11.2.2. A Geometric Conservation Law

Let Arand 1" = nAt denote the chosen time-step and the n2-th time-station, respectively. Integrating
Eq. (11) between ¢ and "' leads to

ned nol

f | "
f VxOWdt +f Fi(w. X. X)
Iz ([1 Iz

— V"(xllFl)W"H*l _ V,(x”)Wl” (1

nil

IV
+/ Fiiw, x.x) =10
,ll
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The most important issue in the solution of the first of Egs. (1) via an ALE method is the proper

evaluation of jI'H Fi(w,x, x) in Eq. (14). In particular, it is crucial to establish where the fluxes
must be integrated: on the mesh configuration at t = ¢"(x"), on the configuration att = i xty,
or in between these two configurations. The same questions also arise as to the choice of the mesh
velocity vector x.

Let W* denote a given uniform state of the flow. Clearly, a proposed solution method cannot be
acceptable unless it conserves the state of a uniform flow. Substituting W = W,:'“ = W~*in Eq.

(14) gives:
’ntl

(VI — v we -+—/ Fiw*, x,x)dt =0 (15)

I

in which w* is the vector of the state variables when W, = W* for all k. From Eq. (9) it follows
that:

F(w . x.X) = / (F(W") —xWY do (16)
AC, (X)

Given that the integral on a closed boundary of the flux of a constant function is identically zero
we must have

f FWHdo =0 (17)
dC(X)

it tollows that
F,(w*.x,i()z—f xW*do (18)
dC XD

Hence, substituting Eq. (18) into Eq. (15) yields

ntl

!
(Vix"t — V,»(x”))W*—(f / YdodnyW* =0 (19
" HC (XD

which can be rewritten as

ol

!
(Vi(x""h = vi(x")) = / / ydodt (20)
" aC(X)

Eq. (20) must be verified by any proposed ALE mesh updating scheme. We refer to this equation
as the geometric conservation law (GCL) because: (a) it can be identified as integrating exactly the
volume swept by the boundary of a cell in a FV formulation, (b) its principle is similar to the GCL
condition that was first pointed out by Thomas and Lombard [39] for structured grids treated by
finite difference schemes. More specifically. this law states that the change in volume of cach cell
between ¢ and "' must be equal to the volume swept by the cell boundary during the time-step
Atf = 1" "' — " Therefore. the updating of x and X cannot be based on mesh distorsion issues alone

when using ALE solution schemes.
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Figure [1.2. Parametrization of 2 moving triangular facet.

I1.2.3. Implications of the Geometric Conservation Law

From the analysis presented in the previous section, it follows that an appropriate scheme for
el

evaluating /,/ F,(w™, X, X)dt 1s a scheme that respects the GCL condition (20). Note that once a

mesh updating scheme is given, the left hand side of Eq. (20) can be always computed. Hence. a
o -

o Fiw* o x x)dtis one that obeys the GCL and therefore computes

proper method for evaluating |

X do drt.

et
exactly the right hand side of Eq. (20) — that s, /{' e

In three-dimensional space cach tetrahedral cell is bounded by a collection of triangular facets. Let
Iiupe) denote the mesh velocity flux crossing a facet [ubc):

I/wl .
[Iuln‘| = / / xndodt (2hH
" labe]

and let v, v, and v, denote the instantaneous positions of the three connected vertices a. b and ¢.
The position of any point on the facet can be parametrized as follows (see Figure [1.2)

X=X, ) FoaXp (D) + (T — oy —aa)X A1)
X=X, (1) +aaXp(t)y + (1 —ay — o)X (1) (22)

ay €10. 1]: are[0. Il —ey]; te”. " Y

where
Ny = seoxt 4 -8 i=u. boc (2:

!
and §(r) is a real function satistyving

S =0 st =1 (24
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Substituting the above parametrization in Eq. (21) leads to

1

|

Ilub('] = f Zg(Axu + AX/, + Axc)-(xuc N xl)c) dé (25)
0 -

where ‘
R IR .. . — P — Wt _n
Ngoe = Yo — Xol e = Xp — X, Ax, = Xy — X

4
(26)
Avpy =" —xps Axe =" - !

.
and the mesh velocities ¢, X;, and x. are obtained from the differentiation of Eqgs. (23):

X, = 5(1)(-'6(','+I —x" i=u, b, ¢ (27)

a

Finally, noting that

Nae AXpe = ((BX" T4 (1= 8)x" ) A ST 4+ (1 = 8)xp)) (28)

ac he

is a quadratic function of 8, it becomes clear that the integrand of /. is quadratic in 8. and
therefore can be exactly computed using a nvo-point integration rule, provided that Egs. (27) hold.
That is.

. AS
¥ =8t ="y = E("M —x") (29)

which in view of Eq. (24) can also be written as:

.\.n+| —

= — (30
At

el

Summarizing, an appropriate method for evaluating | Fi(w,x,X) dr that respects the GCL

condition (20) is

"

" - At n ml on+3
F,'(W.X.X)l/lZT(F,'(W XOUXTTE)
,ll —

. L
+ F,'(W”, xln_' er—:))

| |
ml=n+§+2\/§
5 ] 1 (30
”l-:’l+§_2\/§
w = w1 = W

x/lH} —_ ),)xu+| + (l _ l’)xu

|
IR
x/l T —




I1.3. A STAGGERED EXPLICIT/IMPLICIT TIME INTEGRATOR

I1.3.1. Background

When the structure undergoces small displacements. the tfluid mesh can be frozen and “transpiration™
fluxes can be introduced at the fluid side of the fluid/structure boundary to account for the motion of
the structure. In that case, the transient aeroelastic problem is simplified from a three- to a two-field
coupled problem.

Furthermore, if the structure is assumed to remain in the linear regime and the fluid flow is linearized
around an equilibrium position W, (note that most fluid/structure instability problems are analyzed
by investigating the response of the coupled system to a perturbation around a steady state), the
semi-discrete equations governing the coupled aeroelastic problem become (see [33] for details):

[7]=[e 207
R

o . q\. .
where dw is the perturbed fluid state vector, s = ( (: ) i1s the structure state vector, matrix A results

from the spatial discretization of the flow equations. B is the matrix induced by the transpiration
fTuxes at the fluid/structure boundary 17y 5. C is the matrix that transforms the fluid pressure on

0 ! :l where M. D. and K are

[" s into prescribed structural forces: finally E = [—M"‘ K -M 'D

the structural mass, damping. and stiffness matrices.

A mathematical discussion ot the time-integration of Egs. (32) via implicit/implicit and e¢x-
phcit/implicit partitioned procedures can be found in Ref. [33]. In the present work we focus
on the more general three-way coupled acroelastic problem (). Based on the mathematical re-
sults established by Farhat, Fezoui and Lanteri [12] for solving Eqs. (32). we design a family of
explicit/implicit staggered procedures for time-integrating Egs. (1), and address important issues
pertaining to accuracy, stability, distributed computing, subcycling, and parallel processing.

[1.3.2. A0: An Explicit/Implicit Algorithm

We consider 3D nonlincar Euler flows and linear structural vibrations. Fromthe results established in
Section [1.2. it follows that the semi-discrete equations governing the three-way coupled aeroelastic
problem can be written as:
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In many aeroelastic problems such as flutter analysis, a steady flow is first computed around a
structure in equilibrium. Next, the structure is perturbed via an initial displacement and/or velocity
and the aeroelastic response of the coupled fluid/structure system is analyzed. This suggests that a
natural sequencing tor the staggered time-integration of Eqs. (33) 1s:

I.  Perturb the structure via some initial conditions.

|8

Update the fluid grid to conform to the new structural boundary.

3. Advance the flow with the new boundary conditions.

4. Advance the structure with the new pressure load.

5. Repeat from step (2) until the goal of the simulation (flutter detection or suppression) is reached.

An important feature of partitioned solution procedures is that they allow the use of existing single
discipline software modules. In this effort, we are particularly interested in re-using a 3D version
of the massively parallel explicit flow solver described by Farhat. Lanteri and Fezoui [10.12.14.25].

Therefore. we select to time-integrate the semi-discrete fluid equations with a 3-step variant ot the
explicit Runge-Kutta algorithm. On the other hand. the aeroclastic response of a structure is often
dominated by low frequency dynamics. Hence. the structural equations are most efficiently solved
by an implicit time-integration scheme. Here, we select to time-integrate the structural motion with
the implicit midpoint rule (IMR) because it allows enforcing both continuity Egs. (2) while still
respecting the GCL condition (see [26]). Consequently. we propose the following explicit/implicit
solution algorithm for solving the three-field coupled problem (33):
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I. Update the fluid grid:

Solve Mx-n+l +DXII+| _+_Kxn+l — K(‘ qn
- ) .
Compure x™' x> from Eq. (33)
nt "

X" —x
At

T
xuk: —

2. Advance the fluid system using RK3:

w1 n
Wi - W1
VX e

W{l+|'“
! ‘/,(x/r+l) ! (,%4)

| I At
Ve —r 2!
FEMW, X" X)) ko= 12,3
an+| — Wn-u“‘

. L
F,’(W”. x/nl‘ anr:]

3. Advance the structural system using IMR:

Mq,,?l‘f—l)(‘/”I%—KqHH — f('\/(“,nvl)

nl " Al ] |
T =q +=5@+q)

(llH — Q'+~;(q +(] H)

In the sequel the above explicit/implicit staggered procedure is referred to as AO. It is depicted in
Figure I1.3. Extensive expertments with this solution procedure have shown that its stability limit
is governed by the critical time-step of the explicit fluid solver (and therefore is not worse than that
of the underlying fluid explicit time-integrator).

The 3-step Runge-Kutta algorithm is third-order accurate for linear problems and second-order
accurate for nonlinear ones. The midpoint rule is second-order accurate. A simple Taylor expansion
shows that the partitioned procedure AQ is first-order accurate when applied to the linearized Eqs.
(32). When applied to Egs. (33). its accuracy depends on the solution scheme selected for solving
the fluid mesh equations of motion. As long as the time-integrator applied to these cquations is
consistent, AQ is guaranteed to be at least first-order accurate.
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Figure I1.3. The basic FSI staggered procedure AO.

11.4. SUBCYCLING

The Auid and structure fields have otten ditfferent physical time scales. For problems in aeroelasticity.
the fluid flow usually requires a smaller temporal resolution than the structural vibration. Theretore.
it AO is used to solve Egs. (33), the coupling time-step A, will be typically dictated by the stability
time-step of the fluid system Aty and not the time-step Afg > Arp that meets the accuracy
requirements of the structural field.

Subcycling the fluid computations with a factor ny,p = Atg/Aty can offer substantial computa-
tional advantages. including

e savings in the overall simulation CPU time, because in that case the structural field will be
advanced fewer times.

e savings in IO transfers and/or communication costs when computing on a heterogeneous
platform, because in that case the fluid and structure kernels will exchange information tewer
times.

However, these advantages are effectively realized only if subcycling does not restrict the stability
region of the staggered algorithm to values of the coupling time-step Az, that are small enough to
offset these advantages. In Ref. [33] it is shown that for the linearized problem (32). the straight
forward conventional subcycling procedure — that is. the scheme where at the end of cach ny, ¢
fluid subcycles only the interface pressure computed during the last fluid subcycle is transmitted to
the structure — lowers the stability limit of AO to a value that is less than the critical time-step of
the fluid explicit time-integrator.

On the other hand. it is also shown in Ref. [33] that when solving Egs. (32). the stability limit of AOQ

can be preserved if: (a) the deformation of the fluid mesh between ¢ and “Iis evenly distributed

among the ng, . subeycles, and (b) at the end of cach ngp fluid subcycles. the average of. the
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Figure I1.4. The fluid-subcycled staggered algorithm Al.

interface pressure field Py, = computed during the subcycles between ¢ and "*' is transmitted
to the structure. Hence. a generalization of A0 is the explicit/implicit fluid-subcycled partitioned
procedure depicted in Figure I1.4 for solving Eqgs. (33). This algorithm is denoted by Al.

Extensive numerical experiments have shown that for small values of ng, p, the stability limit of Al
is governed by the critical time-step of the explicit fluid solver. However, experience has also shown
that there exists a maximum subcycling factor beyond which Al becomes numerically unstable.
From the theory developed in [12] for the linearized Egs. (32), it follows that Al is first-order
accurate, and that as one would have expected. subcycling amplifies the fluid errors by the factor

neip.

IL5. EXPLOITING INTER-FIELD PARALLELISM

Both algorithms AO and Al are inherently sequential. In both of these procedures, the fluid svstem
must be updated before the structural system can be advanced. Of course. AO and Al allow intra-
field paralletism (parallel computations within each system), but they inhibit inter-field parallelism.
Advancing the fluid and structural systems simultaneously is appealing because it can reduce the
total simulation time.

A simple variant of Al (or AQ if subcycling is not desired) that allows inter-field parallel processing
is graphically shown in Figure [1.5. This variant is called A2.

Using A2. the luid and structure kernels can run in parallel during the ume-interval [¢,. 4,.,. , |
Inter-ficld communication or /0 transfer is needed only at the beginning of each time-interval. The
theory developed in Ref. [33] shows that for the lincarized Eqgs. (32). A2 s first-order accurate. but
parallelism is achieved at the expense of amplified errors in the fuid and structure responses.

In order to improve the accuracy of the basic parallel time-integrator A2, we have investigated
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Figure I1.5. The inter-parallel. fluid-subcycled staggered algorithm AZ2.

exchanging information between the fluid and structure kernels at half-steps as illustrated in Figure
[1.6. The resulting algorithm is called A3.

For algorithm A3, the first half of the computations is identical to that of A2, except that the fluid
system 1s subcycled only up to t”*w—ir, while the structure is advanced in one step up to ¢ ""¥ 7.
At the time ¢+~ the fluid and structure kernels exchange pressure, displacement and velocity
information. In the second-half of the computations. the fluid system is subcycled from ¢ = o
(1750 using the new structural information, and the structural behavior is re-computed in parallel
using the newly received pressure distribution. Note that the first evaluation of the structural state
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Figure [1.6. The midpoint-corrected, inter-parallel,
fluid-subcycled staggered algorithm A3.

vector can be interpreted as a predictor.

[t can be shown that when applied to the linearized Egs. (32). A3 is first-order accurate and reduces
the errors of A2 by the factor ng, ., at the expense of one additional communication step or 1/0
transfer during each coupled cycle (see [12] for a detailed error analysis).

[L.6. COMPUTER IMPLEMENTATION ISSUES

I1.6.1. Incompatible mesh interfaces

In general, the Auid and structure meshes have two independent representations of the physical
fluid/structure interface. When these representations are identical — for example, when every fluid
grid point on I" g/ 1s also a structural node and vice-versa — the evaluation of the pressure torces
and the transfer of the structural motion to the fluid mesh are trivial operations. However, analysts
usually prefer to be free of such restrictions. In particular:

e  Be uble to use a fluid mesh and a structural model that have been independently designed and
validated.

e  Bc able to refine cach mesh independently from the other.
Hence, most realistic aeroelastic simulations will involve handling fluid and structural meshes
that are incompatible at their interface boundaries (Figure 11.7). In Ref. [29], we have addressed

this issue and proposed a preprocessing “matching”™ procedure that does not introduce any other
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approximation than those intrinsic to the fluid and structure solution methods. This procedure can
be summarized as follows.

The nodal forces induced by the fluid pressure on the “wet” surface of a structural element ¢ can
be written as:

fi = —/_M Nipv do (35)
Q

—={e) . .
where @ denotes the geometrical support of the wet surface of the structural element e, p is the
. . . _ =te) . . . . .
pressure field, v is the unit normal to €2 . and N; is the shape function associated with node i.
Most if not all FE structural codes evaluate the integral in Eq. (35) via a quadrature rule:

L=y

fi= =) weNi(X)p(Xe) (36)

g=I

where w, is the weight of the Gauss point X,. Hence, a structural code needs to know the values ot
the pressure field only at the Gauss points of its wet surface. This information can be easily made
available once every Gauss point of a wet structural element is paired with a fluid cell (Figure I1.8).
It should be noted that in Eq. (36), X, are not necessarily the same Gauss points as those used
for stiffness evaluation. For example, if a high pressure gradient is anticipated over a certain wet
area of the structure, a larger number of Gauss points can be used for the evaluation of the pressure
forces f; on that area.

On the other hand, when the structure moves and/or deforms, the motion of the fluid grid points on
["r/s can be prescribed via the regular FE interpolation:

=une

k
X(S) = Y N(Yg,” (37)
k=1

where S;, wne, .X;, and q; denote respectively a fluid grid point on ['g;s. the number of wet
nodes in its “nearest” structural element ¢, the natural coordinates of §; in 5“’). and the structural
displacement at the &-th node of element e. From Eq. (37), it follows that each fluid grid point on
I",:¢ must be matched with one wet structural element (see Figure 11.9).

Given a fluid grid and a structural model. constructed independently. the Matcher program described
in Ref. [29] generates all the data structures needed to evaluate the quantities in Egs. (39.40) in a
single preprocessing step.

I1.6.3. Intra-field parallel processing

Acroelastic simulations are known to be computationally intensive and therefore can benefit from
the parallel processing technology. An important feature of a partitioned solution procedure is
preservation of software modularity. Hence, all of the solution procedures AO. Al. A2 and A3
can use existing computational fluid dynamics and computational structural mechanics parailel
algorithms. The solution of the mesh motion equations can be easily incorporated into an existing
fluid code, and its parallelization is not more difficult than that of a FE structural algorithm.

[-16



Figure I1.7. Mismatched fluid-structure discrete interfaces.

Figure 1.8, Pairing of structural Gauss pomts and fluid cells.
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Figure [1.9. Pairing of fluid point and wet structural element

Our approach to parallel processing is based on the mesh partitioning/message-passing paradigm,
which leads to a portable software design. Using an automatic mesh partitioning algorithm [13,17]
both fluid and structural meshes are decomposed into subdomains. The same “‘old” serial code is ex-
ecuted within every subdomain. The “gluing” or assembly of the subdomain results is implemented
in a separate software module.

This approach enforces data locality [25] and is therefore suitable for all parallel hardware archi-
tectures. Note that in this context, message-passing refers to the assembly phase of the subdomain
results. It does not imply that messages have to be explicitly exchanged between the subdomains.
For example, message-passing can be implemented on a shared memory multiprocessor as a simple
access to a shared buffer, or as a duplication of one buffer into another.

11.6.4. Inter-field parallel processing

Using the message-passing paradigm. inter-field parallel processing can be implemented in the
same manner as intra-field multiprocessing. The fluid and structure codes can run either on dif-
ferent sequential or parallel machines, or on a different partition of the same multiprocessor. Any
software product such as PVM [21] can be used to implement message-passing between the two
computational kernels.

11.7. APPLICATIONS AND PRELIMINARY RESULTS

I1.7.1. Transonic Wing Benchmark (3D)

Here we illustrate the aeroelastic computational methodology described in the previous scctions
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Table I1.1 Characteristics of the fluid meshes M1-M4 for 3D benchmark

Mesh Nt'ur NI{‘! N/'(u' Nl'ar

MI 15460 80424 99891 77300 -
M2 31513 161830 201479 157565
M3 63917 337604 415266 319585
M4 115351 643392 774774 576755

with some preliminary numerical investigations on an iPSC-860, a Paragon XP/S, a Cray T3D, and
an IBM SP2 massively parallel systems, of the aerodynamics and aeroelastic transient response of
a 3D wing in a transonic airstream.

The wing is represented by an equivalent plate model discretized by 1071 triangular plate elements,
582 nodes, and 6426 degrees of freedom (Figure 11.10). Four meshes identified as M1 through
M4, are designed for the discretization of the 3D flow domain around the wing. The characteristics
of theses meshes are given in Table 1.1 where N,,,. N;.,, Nyqe, and N, denote respectively the
number of vertices, tetrahedra, facets (edges), and fluid variables. respectively. A partial view of
the discretization of the low domain is shown in Figure II.11.

The sizes of the fluid meshes M 1-M4 have been tailored for parallel computations on respectively
16 (M1), 32 (M2), 64 (M3). and 128 processors (M4) ot a Paragon XP/S and a Cray T3D systems.
In particular, the sizes of these meshes are such that the processors of a Paragon XP/S machine with
32 Mbytes per node would not swap when solving the corresponding flow problems.

Because the fluid and structural meshes are not compatible at their interface (Figure II.12). the
Matcher software [29] is used to generate in a single preprocessing step the data structures required
for transtferring the pressure load to the structure. and the structural deformations to the fluid.

[1.7.2. The Flow Solver and its Parallelization

The Euler flow equations are solved with a second-order accurate FV Monotonic Upwinding Scheme
for Conservation Laws (MUSCL) {40,30] on fully unstructured grids. The resulting semi-discrete
equations are time-integrated using a second-order low-storage explicit Runge-Kutta method. Fur-
ther details regarding this explicit unstructured flow solver and its subdomain based parallehization
can be found in recent publications [10.12.14.25].

In this work, the unstructured dynamic flutd mesh is represented by the pseudo-structural model
of Batina [3] (M = D = 0). The arid points located on the upstream and downstream boundaries
are held fixed. The motion of those points located on "¢ 1s determined from the wing surface
motion and/or deformation. At each time-step 1" *', the new position of the interior grid points is
determined from the solution of the displacement driven pseudo-structural problem via the two-step
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Figure 11.10. The discrete structural model.

iterative procedure described in [14].

11.7.3. The Parallel Structure Solver

The structural equations of dynamic equilibrium are solved with the parallel implicit transient Finite
Element Tearing and Interconnecting (FETT) method [15]. Because it is based on a midpoint rule
formulation, this method allows enforcing both continuity Egs. (2) while still respecting the GCL
condition. The resistance of the structure to displacements in the plane of the skin is assumed to be
small. Consequently, all structural computations are performed with a linearized structural theory.
Since the FETI solver is a domain decomposition based iterative solver, we also use the special
restarting procedure proposed in Ref. [ 16] for the efficient iterative solution of linear systems with
repeated right hand sides.

I1.7.4. Computational Platforms

Computations were performed on the following massively parallel computers: Intel iPSC-860
hypercube, Intel Paragon XP/S, Cray T3D, and IBM SP2, using double precision floating-point
arithmetic throughout. Message passing is carried out via NX on the Paragon XP/S multiprocessor.
PVM T3D on the Cray T3D system, and MPI on the IBM SP2. On the hypercube, fluid and structure
solvers are implemented as separate programs that communicate via the intercube communication
procedures described by Barszcz [2].

11.7.5. Performance of the Parallel Flow Solver

The performance of the parallel flow solver is assessed with the computation of the steady state
of a flow around the given wing at a Mach number Mo, = 0.84 and an angle of attack g = 3.00
degrees. The CFL number is set to 0.9. The four meshes M1-M4 are decomposed in respectively
16, 32, 64. and 128 overlapping subdomains using the mesh partitioner described in [28]. The
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Figure I1.12. Fluid/structure interface incompatibilities

motivation for employing overlapping subdomains and the impact of this computational strategy
on parallel performance are discussed in Ref. [14]. Measured times in seconds are reported in
Tables 11.2 through 11.4 for the first 100 time steps on a Paragon XP/S machine (128 processors).
a Cray T3D system (128 processors), and an IBM SP2 computer (128 processors). respectively.

; . ol , R
In these tables, N,. N,/ . T/ DI Teomps Tioy and Mftlops denote respectively the number

comm?

of processors, the number of variables (unknowns) to be solved. the time elapsed in short range
interprocessor communication between neighboring subdomains. the time elapsed in long range
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Table I1.2. Performance of the parallel flow solver on the Paragon XP/S system
for 16-128 processors (100 time steps — CFL = 0.9)

. loc glo .
Mesh Np Noar T Tetomm Tcmnp Tion MﬂOPS

compr

Ml [6 77,300  2.0s. 400s. 96.0s. 138.0s. 84
M2 32 157565 45s. 570s. 98.5s. 160.0 s. 145
M3 64 319585 7.0s.  900s. 103.0s.  200.0s. 240
M4 128 576,755 6.0s.  1050s. 114.0s. 2250s. 401

global interprocessor communication, the computational time, the total simulation time, and the
computational speed in millions of floating point operations per second. Communication and
computational times were not measured separately on the SP2.

Typically, short range communication is needed for assembling various subdomain results such as
fluxes at the subdomain interfaces, and long range interprocessor communication is required for
reduction operations such as those occurring in the the evaluation of the stability time-steps and the
norms of the nonlinear residuals. It should be noted that we use the same fluid code for steady state
and aeroelastic computations. Hence, even though we are benchmarking in Tables I1.2-11.4 a steady
state computation with a local time stepping strategy, we are still timing the kernel that evaluates
the global time-step in order to reflect its impact on the unsteady computations that we pertorm
in aeroelastic simulations such as those that are discussed next. The megaflop rates reported in
Tables 1.2 through I1.4 are computed in a conservative manner: they exclude all the redundant
computations associated with the overlapping subdomain regions.

Table 11.3. Performance of the parallel flow solver on the Cray T3D system
for 16-128 processors (100 time steps — CFL = 0.9)

2o 1/ . . Q/(F 2] .
Mesh N/) Nl'(ll' 1o r('mum 71':!111[) Tlul MHOPS

cenrnm

Ml 16 77,300 1.6, 2.1s. 87.3s. 91.0s. 127
M2 32 157,565 25s.  4.0s. 1014s. 108.0s. 215
M3 64 319,585 35s.  7.2s. 1003s. 111.0s. 433
M4 128 576,755 3.0s. 7.2s. 85.3s. 95.5 s. 945

It may be readily verified that the number of processors assigned to each mesh is such that Ny, /N,
is almost constant. This means that larger numbers of processors are attributed to larger meshes
in order to keep each local problem within a processor at an almost constant size. For such a
henchmarking strategy. parallel scalability of the flow solver on a target parallel processor implies
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Table [1.4. Performance of the parallel flow solver on the IBM SP2 system
for 16~128 processors (100 time steps — CFL = 0.9)

Mesh Np Nuur 71.[:,),(,.,,,, ’Iltlj:[l’rjnn Tmmp Tml MﬂOPS
MI 16 77.300 10.8 s. 1072
M2 32 157,565 2.0 s. 1930
M3 64 319,585 12.8 s. 3785
M4 128 576,755 11.9s. 7430

Figure I1.13. Mach number isosurfaces for the steady-state regime.

that the total solution CPU time should be constant for all meshes and their corresponding number

of processors.

This is clearly not the case tor the Paragon XP/S system. On this machine. short range communica-
tion is shown to be inexpensive, but long range communication costs are observed to be important.
This is due to the latency of the Paragon XP/S parallel processor. which is an order of magni-
tude slower than that of the Cray T3D system. Another possible source of global communication
time increase is the load imbalance between the processors since message passing is also used
for synchronization. However. this does not seem to be significant on the T3D and SP2 parallel
Processors.

On the other hand, parallel scalability is well demonstrated for the Cray T3D and IBM SP2 systems.
The results reported in Tables 11.3 and 1.4 show that all computations using meshes M1-Md4 and

the corresponding number of processors consume almost the same total amount of CPU time. For
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128 processors, the Cray T3D system is shown to be more than twice faster than the Paragon XP/S
machine. The difference appears to be strictly in long range communication as the computational
time is reported to be almost the same on both machines. However, most impressive is the fact that
an IBM SP2 with 32 processors only is shown to be three times faster than a |28-processor Paragon
XP/S, and faster than a Cray T3D with 128 processors.

Figure 11.14. [Initial perturbation of the displacement field of the wing.

I1.7.6. Performance of the Parallel Structure Solver

For the performance assessment of the parallel FETI structural solver. we refer the reader to the
recent publications {15,16].

11.7.7. Performance of the Partitioned Procedures A0-A3

In order to illustrate the relative merits of the partitioned procedures AO. Al, A2 and A3. we
consider first two different series of transient aeroelastic simulations at Mach number M. = 0.84
that highlight

e the relative accuracy of these coupled solution algorithms for a fixed subcycling factor ng .
e the relative speed of these coupled solution algorithms for a fixed level of accuracy.

In all cases, mesh M2 is used for the flow computations, 32 processors of an iPSC-860 system are
allocated to the fluid solver, and 4 processors of the same machine are assigned to the structural
code. Initially, a steady-state flow is computed around the wing at M~ = 0.34 (Figure [L13)n a
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Figure IL.15.  Lift history for the first half cvcle, ng;p = 10
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Figure I1.16. Lift history for the first half cycle. ng;r = 30

Mach number at which the wing described above is not supposed to flutter. Then. the aeroelastic
response of the coupled system 1s triggered by a displacement perturbation of the wing along its
first mode (Figure 11.14).

First, the subcycling factor is tixed to nng;p = 10 then to 14, = 30, and the lift is computed using
atime-step corresponding to the stability limit of the explicit flow solver in the absence of coupling
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Table I1.5. Performance results for coupled FSI problem on the Intel iPSC-860
Fluid: 32 processors,  Structure: 4 processors
Elapsed time for 50 fluid time-steps

]

Alg. Fluid Fluid Struc. ICWS ICWF Total
Solver Motion  Solver CPU

A0 1774s.  T71.2s. 334s. 2190s. 384.1s. 632.7s.

Al 180.0s.  71.2s. 169s. 21695, 89.3s. 340.5 s.

A2 1848s.  T1.2s. 16.6s. 114.0s. 0.4 s. 256.4 s.

A3 176.1s. T71.2s. 104s. 1123 04s. 247.7 s.

with the structure. The obtained results are depicted in Figure [1.15 and Figure 11.16 for the first
half cycle.

The superiority of the parallel fluid-subcycled A3 solution procedure is clearly demonstrated in
Figure 1I.15 and Figure 11.16. For ng,;r = 10, A3 is shown to be the closest to A0, which is
supposed to be the most accurate since it is sequential and non-subcycled. Al and A2 have
comparable accuracies. However, both of these algorithms exhibit a significantly more important
phase error than A3, especially tor ng,p = 30.

Next. the relative speed of the partitioned solution procedures is assessed by comparing their CPU
time for a certain level of accuracy dictated by AO. For this problem. it turned out that in order to
meet the accuracy requirements of AQ, the solution algorithms Al and A2 can subcycle only up to
ng, = 5. while A3 can easily use a subcycling factor as large as ng,r = 10. The performance
results measured on an iPSC-860 system are reported on Table 115 for the first 50 coupled time-steps.
In this table. ICWF and ICWS denote the inter-code communication timings measured respectively
in the fluid and structural kernels; these timings include idle and synchronization (wait) time when
the fluid and structural communications do not completely overlap. For programming reasons.
ICWS is monitored together with the evaluation of the pressure load.

I1.8. CONCLUSIONS

From the results reported in Table I1.5. the following observations can be made.

e The fluid computations dominate the simulation time. This is partly because the structural
model is simple in this case. and a linear elastic behavior is assumed. However. by allocating
32 processors to the fluid kernel and 4 processors to the structure code. a reasonable load
balance is shown to be achieved for AQ.
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e  During the first 50 fluid time-steps, the CPU time corresponding to the structural solver does
not decrease linearly with the subcycling factor ng, s because of the initial costs of the FETI
reorthogonalization procedure designed for the efficient iterative solution of implicit systems
with repeated right hand sides [16].

e  The effect of subcycling on intercube communication costs is clearly demonstrated. The
impact of this effect on the total CPU time is less important for A2 and A3 which feature
inter-field parallelism in addition to intra-field multiprocessing, than for A1 which features
intra-field parallelism only (note that Al with ng, - = | is identical to AO), because the flow
solution time is dominating.

e  Algorithms A2 and A3 allow a certain amount of overlap between inter-field communications,

which reduces intercube communication and idle time on the fluid side to less than 0.001% of

the amount corresponding to AQ.

e  The superiority of A3 over A2 is not clearly demonstrated for this problem because of the
simplicity of the structural model and the consequent load unbalance between the fluid and
structure computations.

Most importantly, the performance results reported in Table 11.5 demonstrate that subcycling and
inter-field parallelism are desirable for aeroelastic simulations even when the flow computations
dominate the structural ones. because these features can significantly reduce the total simulation
time by minimizing the amount of inter-field communications and overlapping them. For the simple
problem described herein. the parallel fluid-subcycled A2 and A3 algorithms are more than twice
faster than the conventional staggered procedure AQ.

Acknowledgments

This work was supported by NASA Langley under Grant NAG-1536427, by NASA Lewis Research Center
under Grant NAG3-1425, and by the National Science Foundation under Grant ESC-9217394,

1-27



0o.

9.

10.

REFERENCES

W. K. Anderson, J. L. Thomas and C .L.. Rumsey, Extension and application of flux-vector splitting to
unsteady calculations on dynamic meshes, AIAA Paper No. 87-1152-CP, 1987.

E. Barszez. Intercube communication on the iPSC/860, Scalable High Performance Computing Confer-
ence. Williamsburg, April 26-29, 1992,

J. T. Batina, Unsteady Euler airfoil solutions using unstructured dynamic meshes, AIAA Paper No.
89-0115, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, January 9-12, 1989.

T. Belytschko, P. Smolenski and W. K. Liu, Stability of multi-time step partitioned integrators for first-
order finite element systems, Comput. Meths. Appl. Mech. Engrg., 49 (1985) 281-297.

M. Blair, M. H. Williams and T. A. Weisshaar, Time domain simulations of a flexible wing in subsonic
compressible flow, AIAA Paper No. 90-1153, AIAA 8th Applied Aerodynamics Conference, Portland.
Oregon. August 20-22. 1990.

C.J. Borland and D. P. Rizzetta, Nonlinear transonic flutter analysis, AJAA Journal, 20 (1982) 1606-1615.

J. Donca. An arbitrary Lagrangian-Eulerian finite element method for transient fluid-structure interac-
tions, Comput. Meths. Appl. Mech. Engrg.. 33 (1982) 689-723.

C. Farhat and T. Y. Lin. Transient acroelastic computations using multiple moving frames of reference.
ATAA Paper No. 90-3053. AIAA Sth Applied Aerodvnamics Conference, Portland, Oregon, August 20-22.
1990.

C. Farhat, K. C. Park and Y. D. Pelerin. An unconditionally stable staggered algorithm for transient finite
clement analysis of coupled thermoelastic problems, Compur. Meths. Appl. Mech. Engrg.. 85 (1991)
349-365.

C. Farhat. S. Lanteri and L. Fezoui, Mixed finite volume/finite element massively parallel computations:
Euler flows, unstructured grids, and upwind approximations, in Unstructured Scientific Computation on
Scalable Multiprocessors, ed. by P. Mehrotra. J. Saltz. and R. Voigt. MIT Press, (1992) 253-283,

C. Farhat and T. Y. Lin. A structure attached corotational luid grid for transient aeroelastic computations,
AIAA Journal. 31 (1993) 597-599

C. Farhat. L. Fezoui. and S. Lanteri, Two-dimensional viscous flow computations on the Connection
Machine: unstructured meshes, upwind schemes. and massively parallel computations. Compur. Meths.
Appl. Mech. Engrg., 102 (1993) 61-88.

C. Farhat and M. Lesoinne, Automatic partitioning of unstructured meshes for the parallel solution of
problems in computational mechanics, Inrernat. J. Numer. Meths. Engrg.. 36. (1993) 745-704.

C. Farhat and S. Lanteri, Simulation of compressible viscous flows on a variety of MPPs: computational
algorithms for unstructured dynamic meshes and performance results. Comput. Meths. Appl. Mech.
Engre.. 119, (1994) 35-60).

C. Farhat. L. Crivelli and E. X. Roux, A transient FETI methodology for large-scale parallel implicit
computations in structural mechanics, Internat. J. Numer. Meths. Engrg.. 37. (1994) 1945-1975.

[1-28



19.

26.

29,

30).

3.

C. Farhat, L. Crivelli and F. X. Roux, Extending substructure based iterative solvers to multiple load and
repeated analyses, Comput. Meths. Appl. Mech. Engrg., 117 (1994) 195-2009.

C. Farhat, S. Lanteri and H. D. Simon. TOP/DOMDEC, A software tool for mesh partitioning and parallel
processing, J. Compur. Svs. Engre.. in press.

C. Farhat. P. S. Chen and P. Stern. Towards the ultimate iterative substructuring method: combined
numerical and parallel scalability. and multiple load cases, J. Comput. Svs. Engrg., in press.

C. A. Felippa and K. C. Park. Staggered Transient Analysis Procedures for Coupled Dynamic Systems:
Formulation, Comput. Meths. Appl. Mech. Engrg., 24, (1980) 61-112 ’

C. A. Felippa, C. Farhat, P-S. Chen, U. Gumaste, M. Lesoinne and P. Stern, High performance parallel
analysis of coupled problems for aircraft propulsion, Progress Report to NASA LeRC for Period 6/94
through 1/95, Report CU-CAS-95-02, Center for Aerospace Structures, University of Colorado. Boulder,
February 1995.

A. Geist, A. Beguelin, J. Dongarra, R. Mancheck, V. Sunderam, PVM 3.0 User’s Guide and Reference
Manual. Technical Report ORNL/TM-12187. OQak Ridge National Laboratory, 1993,

G. P. Guruswamy. Time-accurate unsteady aerodynamic and aeroelastic calculations of wings using
Euler cquations. AIAA Paper No. 88-2281. AIAA 29th Structures, Structural Dynamics and Materials
Conterence, Williamsburg, Virginia. April. 18-20, 1988,

W. J. Hesse and N. V. S. Mumford, Jet Propulsion for Aerospace Applications, 2nd ed.. Pitnam Pubs..
New York, N.Y., 1964, Chapter 11.

O. A. Kandil and H. A. Chuang, Unsteady vortex-dominated flows around maneuvering wings over a
wide range of mach numbers. AIAA Paper No. 88-0317.AIAA 261h Aerospace Sciences Meeting. Reno.
Nevada, January {1-14, 1988,

S. Lanteri and C. Farhat. Viscous flow computations on MPP systems: implementational issues and
performance results for unstructured grids, in Parallel Processing for Scientific Computing, ed. by R. F.

Sincovec er. al.. STAM (1993) 65-70.

M. Lesoimne and C. Farhat. Stability analysis of dynamic meshes for transient acroelastic computations,
ATAA Paper No. 93-3325. 1 1th AIAA Computational Fluid Dyvnamics Conference. Orlando. Florida. July
6-9. 1993,

M. Lesoinne and C. Farhat. Geometric conservation laws for aeroelastic computations Using unstructured
dynamic meshes, AIAA Paper No. 95-1709, 1995.

M. Loriot, MS3D: Mesh Splitter for 3D Applications, User’s Manual.

N. Maman and C. Farhat, Matching fluid and structure meshes for acroelastic computations: a parallel
approach. Computers & Structures, in press.

B. NKonga and H. Guillard. Godunov type method on non-structured meshes tor three-dimensional
moving boundary problems. Comput. Meths. Appl. Mech. Engre.. 113, (1994) 183-204.

K. C. Park, C. A. Felippa and 1. A. DeRuntz. Stabilization of staggered solution procedures for tluid-
dtructure interaction analysis. in Computational Methods for Fluid-Strucrure Interaction Problems. ed.

11-29



33

34

35.

36.

37.

38.

39.

40.

by T. Belytschko and T. L. Geers, AMD Vol. 26, American Society of Mechanical Engineers, ASME,
New York (1977) 95-124

K. C. Park and C. A. Felippa, Partitioned analysis of coupled systems, in: Computational Methods for
Transient Analysis, T. Belytschko and T. J. R. Hughes, Eds., North-Holland Pub. Co. (1983) 157-219.

S. Piperno and C. Farhat. Partitioned procedures for the transient solution of coupled aeroelastic problems,
Comput. Meths. Appl. Mech. Engrg., to appear.

E. Pramono and S. K. Weeratunga, Acroelastic computations for wings through direct coupling on
distributed-memory MIMD parallel computers, AIAA Paper No. 94-0095, 32nd Acrospace Sciences
Meeting, Reno. January 10-13, 1994,

R. D. Rausch, §. T. Batina and T. Y. Yang, Euler flutter analysis of airfoils using unstructured dynamic
meshes, AIAA Paper No. 89-13834, 30th Structures, Structural Dynamics and Materials Conterence,
Mobile, Alabama, April 3-5, 1989,

V. Shankar and H. Ide, Acroelastic computations of flexible configurations, Computers & Structures, 30
(1988) 15-28.

T. W. Streganac and D. T. Mook. Numerical model of unsteady subsonic aeroelastic behavior, ATAA
Journal, 28 (1990) 903-909.

T. Tezduyar. M. Behr and J. Liou, A new strategy for finite element computations involving moving
boundaries and interfaces - The deforming spatial domain/space-time procedure: I. The concept and the
preliminary numerical tests, Comput. Meths. Appl. Mech. Engrg., 94 (1992) 339-351.

P. D. Thomas and C. K. Lombard. Geometric conservation law and its application to flow computations
on moving grids, AIAA Journal, 17, (1979) 1030-1037.

B. Van Leer. Towards the ultimate conservative difterence scheme V: a second-order sequel to Godunov's
method, J. Comp. Phvs.. 32 (1979).

[I-30



Appendix III
LB: A Program for Load-Balancing Multiblock Grids

Summary

This Appendix describes recent research towards load-balancing the execution of ENG10 on parallel machines.
ENG10 is a multiblock-multigrid code developed by Mark Stewart of NYMA Research Inc. to perform ax-
isymmetric aerodynamic analysis of complete turbofan engines taking into account combustion, compression
and mixing effects through appropriate circumferential averaging. The load-balancing process is based on
an iterative strategy for subdividing and recombining the ortginal grid-blocks that discretize distinct portions
of the computational domain. The research work reported here was performed by U. Gumaste under the
supervision of Prof. C. A. Felippa.

III.1. INTRODUCTION

I11.1.1. Motivation

For efficient parallelization ot multiblock-grid codes. the requirement of load balancing demands
that the grid be subdivided into subdomains of similar computational requirements. which are
assigned to individual processors. Load balancing is desirable in the sense that if the computational
load of one or more blocks substantially dominates that of others. processors given the latter must
wait until the former complete.

Such “computational bottlenecks™ can negate the beneficial effect of parallelization. To give an
admittedly extreme example. suppose that the aerodynamic discretization uses up 32 blocks which
are assigned to 32 processors. and that one of them takes up 5 times longer to complete than the
average ol the remaining blocks. Then 31 processors on the average will be idle 80% of the time.
Load balancing is not difficult to achieve tor unstructured meshes arising with finite-element or
finite-volume discretizations. This is because in such cases one deals with element-level granularity.
which can be efficiently treated with well studied domain-decomposition techniques torunstructured
meshes. In essence such subdomains are formed by groups ot connected elements. and elements
may be moved from one domain to another with few “strings attached™ other than connectivity.

On the other hand for multiblock-grid discretizations the problem is more difficult and has not. to
the writers’ knowledge. been investigated in any degree of generality within the context of load
balancing. The main difficulty is that blocks cannot be arbitrarily partitioned. tor example ccell by
celll because discretization constraints enforcing grid topological regularity must be respected.

The following is an outline of the program LB developed at the University of Colorado to perform
load-balancing of the multiblock discretization used in the program ENG10. This is a multiblock-
multigrid code developed by Mark Stewart of NYMA Research Inc. to perform axisymmetric
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acrodynamic analysis of complete turbofan engines taking into account combustion, compression
and mixing ctfects through appropriate circumferential averaging [1].

IT1.1.2. Requirements and Constraints

Multiblock grids are used to discretize complex geometries. A multiblock grid divides the physical
subdomain into topologically rectangular blocks. The grid pertaining to each block is regular
(structured). For bladed jet engine geometries, this is achieved by a series of programs also written
by Mark Stewart, namely TOPOS, TF and MS [2,3], which function as preprocessors to ENG10.
Efficient parallelization requires the computational load to be (nearly) equal among all processors.
Usually, depending upon the geometry, the computational sizes of component blocks of a multiblock
discretization vary and mapping one to each processor would not naturally ensure load balance.
The LB program attempts to load balance a given multiblock grid so that the resulting subdivisions
of the grid are of similar computational cost.

Forre-usc of ENG10 to be possible for the parallel version, itis required that the resulting subdivisions
of the original multiblock grid be also regular grids or are collections of blocks, each of which contain
regular grids. This imposed the restriction that the number of final subdivisions desired be greater
than the number of blocks in the original grid. Thus for most cases, ideally, the number of blocks
in the original grid should be 10 to 20, because 32 to 128 processors are normally used in present
generation MPPs. LB works better when the number of available processor substantially exceeds
the original number of blocks.

111.1.3. Multiblock Grid and MS

MS is a program that. given the domain discretization and blade forces, loss and combustor heating
data, cte.. interpolates the data onto the grid. This program was used as a basis for LB as it possesses
the data structures most amenabile to the task of load balancing.

Blocks are arranged in a C programming language linked list. Each block possesses a set of

segments that are lines joining grid points. The number of segments in cach direction (transverse

and lateral) determines the computational size of the block. Segments can be of different tvpes
depending upon where they are located as follows :

L. Fulse bounduary segments. These are segments located at the interface between blocks. These
are called “false™ boundaries as they are not actual physical boundaries in the grid but merely
lines across which data has to be exchanged between two adjacent blocks. Knowledge about
the false boundaries is essential to determine block connectivity.

to

Internal and solid boundarv segments. These are segments located at the interface of combus-
tors, blades. etc. Knowledge about the internal and solid boundary segments helps determine
the location of blades. combustors and other engine components.

3. Fur-field boundary segments. These are segments located at the far-ficld boundaries of the
domain and are useful in imposing boundary conditions.
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Sub-block 2.4
Sub-block 2.3
Sub-block 2.2

Sub-block 1.2
Sub-block 1.1
Sub-block 2.1

Sub-block 1.4
Sub-block 1.3

Figure [II.1.  Block division prior to merger.

Figure I11.2. Block after merger.

ML2. ALGORITHM

A very simple yet efficient algorithm based purely on the geometry of the multiblock grid and block
connectivity was adopted for this program.

The input file containing the grid gives information only about the coordinates of the grid points.
block dimensions component scgments and boundary data. Hence the first task is to determine
the block connectivity. This is done by analysing the false boundary information and determining
blocks across opposite sides of the same false boundary segment. Once the interconnectivity
between blocks is established. the total number of cells in the grid is calculated and that divided
by the number of final subdivisions desired gives an estimate of the average number ot cells per
subdivision.

Based on this average value, blocks are classified into “small” blocks and “large™ blocks. Large
blocks are those whose size is greater than the average size determined above. whereas small blocks
have a size less than or equal to the average size.

Large blocks are then split into smalfer blocks. cach of which has a size approximately equal to the
average size. Smaller blocks are collected into groups so that the total size of cach group is equal
to the average size. This has been found to give excellent load balance for small grids. grids in
which block sizes are compatible, and grids for unbladed configurations. For more complex grids
satistuctory results have been obtained.
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Figure Il1.3. Possible block mergers.

IIL.3 IMPLEMENTATION

I11.3.1 Maximum Block Merger

As first step, blocks from the original grid are merged as much as possible to generated larger
blocks. This is done so as to maximize processor usage.

Consider two blocks as illustrated in Figure ITII.1. Assume that load-balancing conditions require
that each of the blocks be split into four blocks, vertically. Vertical splitting of blocks proceeds
from right to left since blocks are stored in that manner. It is seen that sub-blocks 1.4 and 2.4 are
clearly much smaller than the other sub-blocks and assigning an individual processor to each of
them would be wasteful. Also, if the number of sub-blocks of each of the blocks is reduced to
three from four. each of the processors will become overloaded. Therefore. the best solution to
this problem is to first merge both the blocks and then split their combination to get a better load
balance as shown in Figure I11.2.

In this case it is seen that not only is the total number of sub-blocks reduced by one (implying that
one less processor will be required) but also the load balancing is more effective since sub-block
sizes are more compatible.

Blocks cannot be merged arbitrarily but only in those cases when the resulting larger block will
have a regular grid. This is illustrated in Figure 1.3, As can be seen in that tigure. it is possible to
merge block 1 with block 2 as their merging will result in the formation of a farger block in which
the grid is regular. However, block 3 cannot be merged with either of block I or 2 as the resulting
block would not have a top[ologically regular structure.
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I11.3.2. Block Classification

Once blocks are merged to the maximum permissible extent, all of them are passed through a
classifying routine by which they are tagged as “small” or “large.”

I11.3.3. Splitting of “Large” Blocks

Those blocks classified as “large™ blocks are split into smaller sub-blocks, each having a size as
close as possible to the desired average size.

Blocks are split horizontally or vertically depending upon their dimensions. Wider blocks are split
vertically and narrower blocks are split horizontally. Splitting of a block involves generation of
a false boundary across the sub-blocks and checking for the presence of blades and other engine
components which cannot be “cut”. This is done to ensure continuity in these critical regions.

II1.3.4 Re-merging and Grouping

Once all the “large™ blocks are split, the second phase of the program begins in which the blocks are
re-merged or grouped for maximum processor efficiency. This is done mainly to take very small
blocks into consideration, which can be explained with the help of the Figure II1.4.

In this situation. there is a cluster of “small™ blocks with no “large™ block nearby. The program
selects a number of such “small” blocks and groups them into a cluster. Grouping is different
from merging. Blocks are not merged to produce a single larger block but they are only meant to
reside on the same processor. Grouping requires knowing block interconnectivity and proceeds in
a recursive fashion. First, all “small™ blocks adjacent to the present block are considered. Then. if
the total number of cells of all the blocks is less than the average size, blocks adjacent to the block’s
adjacent blocks are examined. This goes on until a sufficient number of cells are obtained.

There is another case which arises after a “large™ block has been split resulting in the generation of
smaller sub-blocks, each being approximately equal to the average in size. In this case. again. the
adjacent “small™ blocks are merged into one of the children of the parent “large™ block. Here, only
one such block grouping is permitted since it should be noted that the “child™ blocks are very close
to the desired average size and the processor on which they reside should not be further loaded.
This case is illustrated in Figure LS.

I11.3.5 Some Practical Considerations

It has been observed after going through several test cases that the process of load-balancing for
complex multiblock grids is not always deterministic and hence user inputs may be required to
make the process more predictable. This input comprises the following parameters.

MAX_TOL This is the maximum tolerable value to which a processor can be loaded. expressed
in terms of the average size. Usually values between 0.95 and 1.2 give sufficiently
good results.

MIN_TOL This is the minimum tolerable value to which a processor can be loaded. expressed
in terms of the average size. Usually values between 0.6 and 0.9 give suthiciently
good results.
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Figure INL.4. Grouping of small blocks.
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Figure 111.5.  Grouping of small and farge blocks.
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[t should be noted that in most cases, the load balancing is independent of the above parameters.
These attain significance only in case of very complicated geometries.

1.4 EXAMPLES

I11.4.1 A Single Rectangular Block

This is the case of a single rectangular block having a regular grid. On this grid, a perfect load
balance was obtained tor an unbladed block, and satisfactory balance for a bladed block.

II1.4.2 Two Adjacent Rectangular Blocks

The next test case considered two adjacent blocks, each of which contains a regular grids. Again.
for this simple case, a perfect load balance was obtained for two unbladed blocks.

I11.4.3 Grid for General Electric Energy Efficient Engine (GE-EEE)

This test case pertains to the Energy Efficient Engine model developed by General Electric. This
model has been used extensively as computational-intensive tests for ENG10 [1]. The grid was
generated using ENG10 preprocessors [2.3]. It contains |9 original blocks with approximately
[ 15.000 grid points.

The initial load balance is only 15%. as the computational load is heavily dominated by the light-blue
block of Figure 111.6. This block contains a very fine grid because of the presence of a multistage
compressor. A load balancing tactor of approximately 80% was finally obtained. Stages of the
load-balancing process carried out by LB for this tairly complex model are illustrated in color
Figures HI.6 through [11.9.
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[11.5 CONCLUSIONS

A simple but effective algorithm for load-balancing discretizations consisting of multiple regular-
arid blocks has been developed. Preliminary results suggest that the algorithm yields satisfactory
results in the test cases considered here. These test cases have included a axisymmetric aerodynamic
model of the complete GE-EEE, which has over 10° grid points. A load balance of approximately
80% was achieved for this demanding case.

A worthwhile refinement of LB would be the inclusion of hlock weights that account for computa-
tional intensity due to the presence of etfects such as compression or combustion in specific regions.
Such weights might be estimated from CPU measurements on sequential or vector machines. and
ted to LB to further improve the decomposition logic.
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Appendix IV

Massively Parallel 3D Aeroelastic Analysis of Jet Engine

Udayan Gumaste, Carlos A. Felippa, and Charbel Farhat
Presented at the Computational Aerosciences Meeting
NASA Ames Research Center, Mountain View, CA, August 1996

This presentation reports progress in parallel computation methods for simulation of coupled
problems applied to aircraft propulsion systems. This application involves interaction of structures
with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues
addressed include: discrete formulation of coupled problems: treatment of new effects due to
interaction: staggered time stepping; scalable parallel solvers: and coarse three-dimensional versus
fine two-dimensional models. The computer implementation issues addressed include: parallel
treatment of coupled systems; domain decomposition and mesh partitioning strategies; mapping of
decomposed models to hardware: and transfer of information between overall and regional models.
The work is supported by NASA Lewis Research Center and monitored by Dr. C. C. Chamis.

A key objective is to demonstrate the application of this technology to achieve the first realis-
tic unsteady aeroelastic analysis of a multirow-blade engine stage using three-dimensional models
without making geometric approximations in advance. The first three-dimensional aeroelastic anal-
ysis involving a multiple fan-blade configuration was successtully performed during October 1995
on the NAS/IBM SP2 at NASA Ames. The aeroelastic model used for the simulation presented
here comprises one half of a blade row that pertains to the compression stage ot a GE EEE turbofan
engine. This reduced but realistic configuration was used to test the fluid and structure mesh gener-
ators, mesh matchers and analysis modules. This test model has approximately 185,000 degrees of
freedom. This simulation is a prelude to the treatment of more complex configurations involving
two to four full-circle blade rows. Such models are expected to contain up to 2 million freedoms.
which is close to the computational limit on present massively parallel computing platforms such
as the IBM SP2 and Cray T3E.

The structure and fluid models for the test run are shown in the wiretrames plots in Figures V.1 and
IV.2. respectively. The structure is treated by finite element shell model and processed by implicit
integration with a FETI parallel solver. The fluid is treated by unstructured-mesh fluid volume
mcthods stepped in time by MUSCL explicit solver. Structure and flui